Cho tứ giác ABCD có AC cắt BD tại O biết OA=OC, OB=OD.Chứng minh AB//CD, AD//BC.
cho đoạn thẳng AB và CD cắt nhau tại O sao cho OA=OC;OB=OD.Chứng minh tứ giác ABCD là hình thang cân
OA=OC,OB=OD=>AC=BD
Tứ giác có 2 đường chéo bằng nhau thì là hình thang cân
=>ABCD là hình thang cân
Cho tứ giác lồi ABCD có AC vuông góc BD tại O Chứng minh rằng :
Câu 1 \(AB^2+BC^2+CD^2+DA^2=2\left(OA^2+OB^2+OC^2+OD^2\right)\)
Câu 2 \(AB^2+CD^2=AD^2+BC^2\)
1:
ΔOAB vuông tại O
=>AB^2=AO^2+BO^2
ΔBOC vuông tại O
=>BC^2=BO^2+CO^2
ΔAOD vuông tại O
=>AD^2=AO^2+DO^2
ΔDOC vuông tại O
=>DC^2=OC^2+OD^2
AB^2+BC^2+CD^2+DA^2
=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2
=2(OA^2+OB^2+OC^2+OD^2)
2:
AB^2+CD^2
=OA^2+OB^2+OC^2+OD^2
=OA^2+OD^2+OB^2+OC^2
=AD^2+BC^2
31/ Cho hình bình hành ABCD có AC cắt BD tại O. Đáp án nào sau đây đúng:
A. OA = OB; OC = OD. B. OA = OD; OB = OC
C. OA = OC; OB = OD. D. AB = BC; CD = AD
1) Cho tứ giác ABCD có AC cắt BD tại O . Biết OA = 3cm, OB = 4cm , AB =5cm , OC =2OA ; OD=2OB .
Khi đó CD bằng: A.) 5cm. B.) 10cm . C.) 15cm . D.) 20cm .
2) Cho tứ giác ABCD . Hai đường chéo AC và BD cắt nhau tại O . Gọi E là điểm trong của tam giác OCD . Số tứ giác (tứ giác lồi và tứ giác không lồi) nhận 4 trong 5 điểm A, B , .., D , E làm đỉnh là:
A) 3
B) 6
C) 9
D) 12
Tứ giác ABCD có hai góc vuông tại đỉnh A và C ,(BC < AD) AB cắt CD tại E . Hai đường chéo AC và BD cắt nhau tại O , góc BAO = góc BDC a, CM : Δ EAD đồng dạng với Δ ECB b, CM : OD . OB = OA . OC
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
Gọi O là giao điểm hai đường chéo AC và BD
Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
b,khi O là một điểm bất kì thuộc miền trong tứ giác ABCD thì kết luận trên có đúng không
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
Cho tứ giác ABCD có AC cắt BD tại O ,biết OA=OB =OC=OD. Tứ giác ABCD là hình gì
vẽ tứ giác ABCD có AC cắt BD tại O sao cho OC>OA ; OD>OB. lấy M và N là trung điểm của BD và AC . Đường thẳng MN cắt AD và BC lần lượt ở I và K. Chứng minh DI/IA = BK/KC