Những câu hỏi liên quan
AN
Xem chi tiết
DL
Xem chi tiết
LN
Xem chi tiết
VT
Xem chi tiết
LD
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 9 2018 lúc 14:28

Chọn B.

 

Ta có 

mà 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 1 2019 lúc 14:33

Bình luận (0)
TO
Xem chi tiết
NL
19 tháng 10 2020 lúc 21:53

Đề thiếu ngay câu đầu nên ko thể giải được:

Sao cho \(?=3MB\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
19 tháng 10 2020 lúc 22:52

a.

Câu a đề sai hoặc dữ kiện bạn ghi tiếp tục sai.

Gọi P là trung điểm AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IP}\) theo t/c trung tuyến

\(\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OM}=\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}+2\left(\overrightarrow{OI}+\overrightarrow{IM}\right)\)

\(=4\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IM}=4\overrightarrow{OI}+2\left(\overrightarrow{IP}+\overrightarrow{IM}\right)\)

Để tổng này bằng \(4\overrightarrow{OI}\) thì \(\overrightarrow{IP}+\overrightarrow{IM}=0\) đồng nghĩa I là trung điểm MP, đồng nghĩa P trùng N, hoàn toàn vô lý

b.

\(CM=3BM\Rightarrow4\overrightarrow{BM}=\overrightarrow{BC}\)

\(4\overrightarrow{AM}=4\overrightarrow{AB}+4\overrightarrow{BM}=4\overrightarrow{AB}+\overrightarrow{BC}=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)

c.

Từ câu b \(\Rightarrow\overrightarrow{AM}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=-\frac{3}{4}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AC}=-\frac{3}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{AE}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{AM}+\overrightarrow{ME}=\frac{5}{4}\overrightarrow{AM}\Rightarrow\overrightarrow{ME}=\frac{1}{4}\overrightarrow{AM}\)

\(\overrightarrow{BE}=\overrightarrow{BM}+\overrightarrow{ME}=\frac{1}{4}\overrightarrow{BC}+\frac{1}{4}\overrightarrow{AM}=\frac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\frac{1}{4}\left(\frac{3}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

\(\overrightarrow{BE}=-\frac{1}{16}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

Bình luận (0)
NL
19 tháng 10 2020 lúc 22:52

3.

\(\overrightarrow{CI}=\frac{1}{2}\overrightarrow{CM}+\frac{1}{2}\overrightarrow{CN}=\frac{1}{2}.\frac{3}{4}\overrightarrow{CB}+\frac{1}{2}.\frac{1}{2}\overrightarrow{CA}=\frac{3}{8}\left(\overrightarrow{CA}+\overrightarrow{AB}\right)+\frac{1}{4}\overrightarrow{CA}\)

\(=\frac{5}{8}\overrightarrow{CA}+\frac{3}{8}\overrightarrow{AB}=\frac{3}{8}\overrightarrow{AB}-\frac{5}{8}\overrightarrow{AC}\)

Đặt \(\overrightarrow{CK}=k.\overrightarrow{CI}=\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)

\(\overrightarrow{BK}=\overrightarrow{BC}+\overrightarrow{CK}=\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CK}=-\overrightarrow{AB}+\overrightarrow{AC}+\frac{3k}{8}\overrightarrow{AB}-\frac{5k}{8}\overrightarrow{AC}\)

\(=\frac{3k-8}{8}\overrightarrow{AB}-\frac{5k-8}{8}\overrightarrow{AC}=-2\left(3k-8\right)\left(-\frac{1}{16}\overrightarrow{AB}+\frac{5k-8}{16\left(3k-8\right)}\overrightarrow{AC}\right)\)

Do B;E;K thẳng hàng nên:

\(\frac{5k-8}{16\left(3k-8\right)}=\frac{1}{3}\Rightarrow k=\frac{104}{33}\)

\(\Rightarrow\frac{KI}{KC}=\frac{71}{104}\)

Cách tính toán là như vậy, còn quá trình tính toán đúng hay sai thì bạn tự tính lại

Bình luận (0)
DP
Xem chi tiết
MC
12 tháng 11 2023 lúc 19:28

Tui cũng dag tìm câu này nè

 

Bình luận (0)