Những câu hỏi liên quan
H24
Xem chi tiết
H24
19 tháng 9 2018 lúc 20:37

\(\Delta ABC\)vuông tại A(gt)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(\Leftrightarrow55^o+\widehat{C}=90^o\)

\(\Leftrightarrow\widehat{C}=90^o-55^o\)

\(\Leftrightarrow\widehat{C}=35^o\)

Bình luận (0)
H24
Xem chi tiết
AN
Xem chi tiết
NT
7 tháng 3 2022 lúc 22:25

a: \(M=\dfrac{1}{2}\cdot4\cdot xy^2\cdot x^2yz=2x^3y^3z\)

Bậc là 7

Hệ số là 2

Phần biến là \(x^3;y^3;z\)

b: \(M=2\cdot1^3\cdot\left(-2\right)^3\cdot\left(-1\right)=16\)

Bình luận (0)
TQ
Xem chi tiết
NT
2 tháng 9 2022 lúc 20:18

Bài 3: 

góc C=90-55=35 độ

Bài 1:

góc IBC=góc ABC/2=40 độ

góc ICB=40/2=20 độ

=>góc IBC+góc ICB=60 độ

=>góc BIC=120 độ

Bình luận (0)
H24
Xem chi tiết
HD
13 tháng 9 2018 lúc 15:09

1,

5x=4y+2x=>5x-2x=4y=>3x=4y=>x/4=y/3

=x+y/3+4=-56/7=-8

=>x=8.4=32,y=8.3=24

Bình luận (0)
IY
13 tháng 9 2018 lúc 15:15

Bai 1:

1) ta có: x + y = -56 => x = -56 - y

mà 5x = 4y + 2x

=> 5.(-56-y) = 4y + 2.(-56-y)

-280 - 5y = 4y - 112 - 2y

=> -5y - 4y + 2y = -112 + 280

-7y = 168

y = -24

=> x + y = -56 => x -24 = -56 => x = -32

KL:....

các bài còn lại lm tương tự nha

Bình luận (0)
HD
13 tháng 9 2018 lúc 15:15

các bài còn lại tương tự thế mà làm

Bình luận (0)
H24
Xem chi tiết
KL
21 tháng 10 2023 lúc 16:00

S = 1 + 3 + 3² + ... + 3¹⁰⁰⁰

⇒ 3S = 3 + 3² + 3³ + ... + 3¹⁰⁰¹

⇒ 2S = 3S - S

= (3 + 3² + 3³ + ... + 3¹⁰⁰¹) - (1 + 3 + 3² + ... + 3¹⁰⁰⁰)

= 3¹⁰⁰¹ - 1

⇒ S = (3¹⁰⁰¹ - 1) : 2

Bình luận (0)
TN
21 tháng 10 2023 lúc 16:04

3S=3+32+33+...+31001

3S-S=(3+32+33+...+31001)-(1+3+32+...+31000)

2S= 31001-1

S=(31001-1):2

Bình luận (0)
GG
Xem chi tiết
HA
25 tháng 1 2017 lúc 11:27

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.
Bình luận (0)
GG
Xem chi tiết
HA
25 tháng 1 2017 lúc 11:27

A B C E I M D

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cm

Xét \(\Delta\)ABM và \(\Delta\)ACM có:

AB = AC

\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)

AM chung

=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)

\(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o

Do đó AM \(\perp\) BC

=> \(\Delta\)ABM vuông tại M

Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:

AB2 = AM2 + BM2

=> 152 = AM2 + 92

=> AM = 12cm

Bình luận (1)
MH
Xem chi tiết
TT
28 tháng 10 2017 lúc 19:46
Giữa thế kỉ 19, Bà Huyện Thanh Quan đã đi vào Phú Xuân làm nữ quan Cung trung giáo tập của triều Nguyễn. Bài thơ ‘Qua Đèo Ngang’ đã được nữ sĩ viết khi trên đường thiên lí vào kinh, lúc lần đầu đi qua Đèo Ngang.
Bình luận (2)