Những câu hỏi liên quan
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 21:46

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Bình luận (0)
TM
22 tháng 4 2017 lúc 21:48

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Bình luận (0)
TG
Xem chi tiết
BT
4 tháng 7 2023 lúc 13:58

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

Bình luận (0)
GH
4 tháng 7 2023 lúc 13:58

loading...  

Bình luận (0)
KL
Xem chi tiết
NT
17 tháng 5 2021 lúc 8:42
) V T = ( 2 √ 3 − √ 6 √ 8 − 2 − √ 216 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 2 ⋅ √ 3 − √ 6 √ 2 2 ⋅ 2 − 2 − √ 6 2 .6 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 6 − √ 6 2 √ 2 − 2 − 6 . √ 6 3 ) ⋅ 1 √ 6 = [ √ 6 ( √ 2 − 1 ) 2 ( √ 2 − 1 ) − 6 √ 6 3 ] ⋅ 1 √ 6 = ( √ 6 2 − 2 √ 6 ) ⋅ 1 √ 6 = ( √ 6 2 − 4 √ 6 2 ) ⋅ 1 √ 6 = ( − 3 2 √ 6 ) ⋅ 1 √ 6 = − 3 2 = − 1 , 5 = V P . b) V T = ( √ 14 − √ 7 1 − √ 2 + √ 15 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = ( √ 7 ⋅ √ 2 − √ 7 1 − √ 2 + √ 5 ⋅ √ 3 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = [ √ 7 ( √ 2 − 1 ) 1 − √ 2 + √ 5 ( √ 3 − 1 ) 1 − √ 3 ] : 1 √ 7 − √ 5 = ( − √ 7 − √ 5 ) ( √ 7 − √ 5 ) = − ( √ 7 + √ 5 ) ( √ 7 − √ 5 ) = − ( 7 − 5 ) = − 2 = V P . c) V T = a √ b + b √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a ⋅ √ b + √ b ⋅ √ b ⋅ √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a b + √ b ⋅ √ a b √ a b : 1 √ a − √ b = √ a b ( √ a + √ b ) √ a b ⋅ ( √ a − √ b ) = ( √ a + √ b ) ⋅ ( √ a − √ b ) = a − b = V P . d) V T = ( 1 + a + √ a √ a + 1 ) ( 1 − a − √ a √ a − 1 ) = ( 1 + √ a ⋅ √ a + √ a √ a + 1 ) ( 1 − √ a ⋅ √ a − √ a √ a − 1 ) = [ 1 + √ a ( √ a + 1 ) √ a + 1 ] [ 1 − √ a ( √ a − 1 ) √ a − 1 ] = ( 1 + √ a ) ( 1 − √ a ) = 1 − ( √ a ) 2 = 1 − a = V P
Bình luận (0)
 Khách vãng lai đã xóa
NK
19 tháng 5 2021 lúc 15:39

a) VT=\left(\dfrac{2 \sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{3}-\sqrt{6}}{\sqrt{2^{2} \cdot 2}-2}-\dfrac{\sqrt{6^{2} .6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{2} \cdot \sqrt{6}-\sqrt{6}}{2 \sqrt{2}-2}-\dfrac{6 . \sqrt{6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left[\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}-\dfrac{6 \sqrt{6}}{3}\right] \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{6}}{2}-2 \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}

Bình luận (0)
 Khách vãng lai đã xóa
DC
23 tháng 6 2021 lúc 9:29

a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\dfrac{1}{2}-2=-\dfrac{3}{2}\)

 

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
AJ
13 tháng 7 2017 lúc 10:10

a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

Ta có : VT = \(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)

\(\Leftrightarrow VT=9\) \(=VP\)

Vậy.........

b) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

<=> \(\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2=6\)

Ta có : VT = \(2+\sqrt{3}+2-\sqrt{3}+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

= \(4+2\sqrt{4-3}=4+2=6\)

=> VT = VP

Vậy.....

c) \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

Ta có : VT = \(\dfrac{\sqrt{4}}{\sqrt{\left(2-\sqrt{5}\right)^2}}-\dfrac{\sqrt{4}}{\sqrt{\left(2+\sqrt{5}\right)^2}}\)

= \(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{2+\sqrt{5}}=\dfrac{4+2\sqrt{5}-2\sqrt{5}+4}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

= \(\dfrac{8}{5-4}=8\)

=> VT = VP

Vậy....

Bình luận (0)
HL
13 tháng 7 2017 lúc 10:11

a) Biến đổi vế trái ta có:

VT= \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)

= \(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)

= 9 = VP

Vậy đẳng thức đc chứng minh

b) Đặt vế trái = A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(A^2=\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2\)

\(A^2=2+\sqrt{3}+2-\sqrt{3}+2.\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(A^2=4+2.\sqrt{4-3}=4+2.1=6\)

\(\Rightarrow A=\sqrt{6}=VP\)

Vậy đẳng thức đc chứng minh

Bình luận (0)
NS
13 tháng 7 2017 lúc 15:45

a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

BĐVT ta có:

\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)

Vậy đẳng thức đã được C/m

b) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

BĐVT ta có:

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{2}\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3+1}\right)^2}+\sqrt{\left(\sqrt{3-1}\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left|\sqrt{3+1}\right|+\left|\sqrt{3-1}\right|}{\sqrt{2}}=\dfrac{\sqrt{3+1}+\sqrt{3-1}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)

Vậy đẳng thức đã được C/m

c) \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

BĐVT ta có:

\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\sqrt{\dfrac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{2^2}{\left(2+\sqrt{5}\right)^2}}\)

\(=\dfrac{2}{\left|2-\sqrt{5}\right|}-\dfrac{2}{\left|2+\sqrt{5}\right|}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)

\(=\dfrac{2\sqrt{5}+4-2\sqrt{5}+4}{5-4}=8=VP\)

Vậy đẳng thức đã dược C/m

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
NL
11 tháng 1 2024 lúc 21:01

\(E=a^{12-4}.b^{3-7}=\dfrac{a^8}{b^4}\)

\(E=a^{4-6}.b^{3.4}=\dfrac{b^{12}}{a^2}\)

\(F=\dfrac{a^{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}{a^{\left(\sqrt{5}-3\right)+\left(4-\sqrt{5}\right)}}=\dfrac{a^2}{a^1}=a\)

Bình luận (0)
NP
Xem chi tiết
NU
28 tháng 8 2021 lúc 9:12

\(1,ĐKx\ge5\)

\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)

\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)

\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)

2a,ĐK \(x\ge0;x\ne9\)

,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

 

 

 

Bình luận (0)
TP
Xem chi tiết
NT
20 tháng 8 2021 lúc 0:03

b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

Bình luận (2)
VT
Xem chi tiết
PT
14 tháng 7 2017 lúc 12:54

Bài 2:

\(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(P=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(P=\left[\dfrac{\left(a-1\right)^2}{4a}\right].\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\sqrt{a}-1}{a-1}\right)\)

\(P=\dfrac{\left(a-1\right)^2}{4a}.\dfrac{2\sqrt{a}.\left(-2\right)}{a-1}\)

\(P=\dfrac{\left(a-1\right)^2\left(-4\sqrt{a}\right)}{4a.\left(a-1\right)}\)

\(P=\dfrac{\left(a-1\right).\left(-\sqrt{a}\right)}{a}=\dfrac{-a\sqrt{a}+\sqrt{a}}{a}\)

Bình luận (0)
PT
14 tháng 7 2017 lúc 13:05

Bài 1:

\(A=\dfrac{2}{\sqrt{2}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}-1}\)\(A=\dfrac{2\sqrt{2}}{2}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1}\)

\(A=\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{1}+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(A=\sqrt{2}-\sqrt{3}-\sqrt{2}+\sqrt{3}+1\)

\(A=1\)

Bình luận (0)
PN
14 tháng 7 2017 lúc 13:41

\(B=\left(\dfrac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\right)^2-\left(\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)^2\)

\(B=\left(\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{\sqrt{3}+\sqrt{2}}\right)^2-\left(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{3}-\sqrt{2}}\right)^2\)

\(B=\left(\sqrt{3}+\sqrt{2}\right)^2-\left(\sqrt{3}-\sqrt{2}\right)^2\)

\(B=10\)

Bình luận (0)