x^2y-2xy-3xy^2+6y^2-4x^2+2x^3
BÀI 8: THU GỌN VÀ TÌM BẬC CỦA MỖI ĐA THỨC:
A= -2xy + 3/2xy^2 + 1/2xy^2 + xy
B= xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z
C= 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3
D= 3/4xy^2 - 2xy - 1/2xy^2 + 3xy
E= 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4
F= 3xy^2z + xy^2z - xyz + 2xy^2z -3xyz
0,2:x=1,03+3,97
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
Tìm x
a) x(x^3+3x-4x)-(4x+3x^2)=20
b) (2\3xy-x^2+3xy^3)(2x^2-3xy^2+x^2y)
c) (2xy+3xy^2-x^2y)(xy+x^2y+y^2)
hihihihihihhihihhihihihhihihihhihihhihi
a.4x^2y-3xy^2+xy+xy-x^2y+5xy^2
b.x^2+2y^2+3xy+x^2-3y^2+4xy
c.2x^y-3xy+4xy^2-5x^2y+2xy^2
d.(2x^3+3x^2-4x+1)-(3x+4x^3-5)
phân tích thành nhân tử
`3x^2 -3xy-5x+5y`
`2x^3 y-2xy^3 -4xy^2 -2xy`
`x^2 -1+2x-y^2`
`x^2 +4x-2xy-4y+4y^2`
`x^3 -2x^2 +x`
`2x^2 +4x+2-2y^2`
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
Thu gọn, tìm bậc:
a) 2x^2y^3 1/4xy (-3xy)
b) (-3xy^3)^3 (-2/3x^4y)
c) -2/3xy^2 - 2xy + 4x^2y + 12 + 2xy^2 - 3xy - 20 - 4x^2y
a. \(2x^2y^3.\frac{1}{4}xy.\left(-3xy\right)=-\frac{3}{2}x^4y^5\text{ đa thức có bậc 4+5 = 9}\)
b. \(\left(-3xy^3\right)^3\left(-\frac{2}{3}x^4y\right)=-27x^3y^9\left(-\frac{2}{3}x^4y\right)=18x^7y^{10}\text{ có bậc 7+10 = 17}\)
c.. \(\frac{2}{3}xy^2-2xy+4x^2y+12+2xy^2-3xy-20-4x^2y=\frac{8}{3}xy^2-5xy-8\) có bậc 3
1. Tính
a) 2xy(3xy+2xy^2)
b) (2x-1)(x^2+2x+4)-(x^2-3x)*2x
2. Phân tích đa thức thành nhân tử
a) 4x^3y-8x^2y^2+4xy^3
b) 2xy+3xz+6y^2+xz
c) y^2-4x-4xy+4x^2+2y
3. Thực hiện phép chia
(6x^3-7x^2-x+z):(2x+1)
4. Tìm a để đa thức 2x^3+5x^2-2x+a chia hết đa thức 2x^2-x+1
5. Tìm max của biểu thức A=-2x^2+x-z
CMR
a) \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)=\(\frac{1}{x-y}\)
b) \(\frac{x^2y-2xy^2+y^3}{2x^2-xy-y^2}\)=\(\frac{y-\left(x-y\right)}{2x+y}\)
c) \(\frac{4x^2-4xy+y^2}{y^3-6y^2x+12yx^2-8x}=\frac{-1}{2x-y}\)
C=3x^2y-2xy^2+x^3y^3+3xy^2-2^2y-2x^3y^3
D=15x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3
E=3x^5+1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
tìm bậc
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)