Những câu hỏi liên quan
NH
Xem chi tiết
DQ
24 tháng 9 2020 lúc 6:13

\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)

\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)

\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)

\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)

\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)

Bình luận (0)
 Khách vãng lai đã xóa
CQ
24 tháng 9 2020 lúc 11:50

  Bạn dùng theo công thức này  

\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)   

Dùng pt bậc 2 

\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\) 

Nghiệm x1 ; x2 

\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\) 

\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\) 

\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\) 

\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\) 

\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\) 

\(=\sqrt{2}-\sqrt{2}=0\)

C. 

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1=2\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
DT
9 tháng 9 2018 lúc 15:35

\(\left(1+\frac{\sin^2}{\cos^2}\right)cos^2-\left(1+\frac{cos^2}{sin^2}\right)sin^2.\)

=> \(\frac{cos^2+sin^2}{cos^2}\left(cos^2\right)-\frac{sin^2+cos^2}{sin^2}\left(sin^2\right)\)

=> 1-1 =0

Bình luận (0)
CQ
24 tháng 9 2020 lúc 11:52

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1\) 

\(=2\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
DV
Xem chi tiết
NT
2 tháng 10 2021 lúc 22:45

b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)

\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)

\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)

\(=-x^2+18xy\)

c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)

\(=\left(2a-3b\right)^2-16c^2\)

\(=4a^2-12ab+9b^2-16c^2\)

Bình luận (0)
DN
Xem chi tiết
NT
3 tháng 2 2022 lúc 19:50

\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)

\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)

\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)

Bình luận (0)
DN
Xem chi tiết
TL
30 tháng 9 2016 lúc 22:41

\(\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(1+\frac{4a^2+b^2}{4a^2-b^2}\right)\left(ĐK:2a\ne\pm b\right)\)

\(=\left(\frac{1}{2a-b}-\frac{3b}{\left(2b-b\right)\left(2a+b\right)}-\frac{2}{2a+b}\right):\frac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\frac{2a+b-3b-2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\cdot\frac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)

\(=\frac{2a+b-3b-4a+2b}{8a^2}=\frac{-2a}{8a^2}=-\frac{1}{4a}\)

Bình luận (0)
HN
Xem chi tiết
NT
Xem chi tiết
H24
27 tháng 12 2020 lúc 19:51

a) \(ĐKXĐ:a\ne\pm1\)

b) \(P=\left(\dfrac{a+1}{2a-2}+\dfrac{1}{2-2a^2}\right)\cdot\dfrac{2a+2}{a+2}\)

\(=\left(\dfrac{a+1}{2\left(a-1\right)}+\dfrac{1}{2\left(1-a^2\right)}\right)\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\left(\dfrac{a+1}{2\left(a-1\right)}-\dfrac{1}{2\left(a-1\right)\left(a+1\right)}\right)\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)-1}{2\left(a-1\right)\left(a+1\right)}\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\dfrac{a^2-1-1}{\left(a-1\right)\left(a+2\right)}\)

\(=\dfrac{a^2-2}{a^2+a-2}\)

Khi a = 2 thì :

\(P=\dfrac{2^2-2}{2^2+2-2}=\dfrac{2}{4}=\dfrac{1}{2}\)

p/s: check lại hộ tui nhá =)))

 

Bình luận (1)
NQ
Xem chi tiết
RY
3 tháng 6 2015 lúc 12:27

Ta có: \(\frac{a+1}{2a-2}-\frac{1}{2a^2-2}=\frac{\left(a+1\right)^2-1}{2\left(a^2-1\right)}=\frac{a^2+2a+1-1}{2\left(a^2-1\right)}=\frac{a\left(a+2\right)}{2\left(a^2-1\right)}\)

Vậy D=\(\frac{a\left(a+2\right)}{2\left(a^2-1\right)}.\frac{2\left(a+1\right)}{a+2}=\frac{a}{a-1}\)

Bình luận (0)