Những câu hỏi liên quan
NT
Xem chi tiết
TT
Xem chi tiết
KL
4 tháng 1 2024 lúc 9:48

c) \(55-7.\left(x+3\right)=6\)

\(7.\left(x+3\right)=55-6\)

\(7.\left(x+3\right)=49\)

\(x+3=49:7\)

\(x+3=7\)

\(x=7-3\)

\(x=4\)

d) \(-14-x+\left(-15\right)=-10\)

\(-29-x=-10\)

\(x=-29+10\)

\(x=-19\)

-----------------------------

Số số hạng của A:

\(60-1+1=60\) (số)

Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:

\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2.63+2^7.63+...+2^{55}.63\)

\(=63.\left(2+2^7+...+2^{55}\right)\)

\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)

Vậy \(A⋮21\)

Bình luận (0)
NB
4 tháng 1 2024 lúc 9:39

55-7(x+3)=6

7(x+3)=55-6=49

(x+3)=49:7=7

x=7-3=4

(-14)-x + (-15)=-10

(-14)-x=-10-15=-25

x           =-14-25=-39 

A chia hết 31 chứ

Bình luận (0)
TT
Xem chi tiết
NT
14 tháng 12 2022 lúc 22:47

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

Bình luận (0)
SX
Xem chi tiết
H24
28 tháng 2 2022 lúc 20:44

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

Bình luận (1)
H24
Xem chi tiết
HV
5 tháng 10 2021 lúc 18:28

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

Bình luận (0)
 Khách vãng lai đã xóa
YH
4 tháng 11 2021 lúc 18:41

dcv

Bình luận (0)
NH
Xem chi tiết
NT
11 tháng 10 2023 lúc 19:54

\(B=2\left(1+2+2^2+...+2^{58}+2^{59}\right)⋮2\)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(B=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

Bình luận (1)
NM
Xem chi tiết
H9
28 tháng 10 2023 lúc 9:29

Bình luận (0)
VP
28 tháng 10 2023 lúc 9:35

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{58}.6\)

\(A=6.\left(1+2^2+...+2^{58}\right)\)

\(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(A⋮3\)

_________________

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{56}.30\)

\(A=30.\left(1+...+2^{56}\right)\)

Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)

Vậy \(A⋮5\)

_________________

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)

\(A=14+...+2^{57}.14\)

\(A=14.\left(1+...+2^{57}\right)\)

Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)

Vậy \(A⋮7\)

\(#WendyDang\)

Bình luận (0)
NM
28 tháng 10 2023 lúc 9:37

cảm ơn

 

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 1 2017 lúc 7:14

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 4 2019 lúc 15:17

Sơ đồ con đường

Lời giải chi tiết

 

Ta có: 

C = 2 + 2 2 + 2 3 + 2 4 + ... + 2 59 + 2 60    = 2 1 + 2 + 2 3 1 + 2 + ... + 2 59 1 + 2    = 2.3 + 2 3 .3 + ... + 2 59 .3    = 2 + 2 3 + ... + 2 59 .3 ⇒ C ⋮ 3

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 5 2019 lúc 3:30

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

A = 2 + 2 2 + 2 3 + … + 2 60     = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7

Bình luận (0)