Tính
\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Rút gọn \(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ =\dfrac{1}{100}+1=\dfrac{101}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(A=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(A=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-49}{50}\)
A=1/100−1/100+1/99−1/99+1/98−1/98+1/97−...−1/3+1/2−1/2+1
=1
rút gọn A=\(\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\dfrac{99}{100}\\ =\dfrac{-98}{100}\\ =-\dfrac{49}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=-\dfrac{49}{50}\)
Tính nhanh :
\(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
C= \(\dfrac{1}{100}-\)(\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{98.99}\)+\(\dfrac{1}{99.100}\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
=\(\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
= \(\dfrac{1}{100}-\dfrac{99}{100}\)
=\(\dfrac{-98}{100}=-\dfrac{49}{50}\)
Ta có:
\(=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+......+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)
sau khi giản ước ta được như sau:
=\(\dfrac{1}{100}-1\)=\(\dfrac{-99}{100}\)
\(\dfrac{-1}{99}\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
=-1/99-(1-1/2+1/2-1/3+...+1/98-1/99)
=-2/99+1=97/99
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Giúp mk, 22h là mk phải nộp rùi
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-...-\dfrac{1}{2}+1\\ =1\)
tính\(p=\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-......-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)hepl meeeeeeeee
\(P=\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(P=\dfrac{1}{99}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)
\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{99}\right)\)
\(P=\dfrac{1}{99}-\dfrac{98}{99}=-\dfrac{97}{99}\)
Xong !
tính nhanh
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Giải:
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-1\right)\)
\(=\dfrac{1}{99}-\dfrac{-98}{99}\)
\(=\dfrac{1}{99}+\dfrac{98}{99}\)
\(=\dfrac{99}{99}=1\)
Chúc bạn học tốt!
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}+\dfrac{1}{2.1}\)
=\(\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{96}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)
=\(0+1\)
=\(1\)
Bạn học tốt^^
a) A= \(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
b) B=\(\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
c) C=\(\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-......-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)
1 thực hiện phép tính
a,\(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{6}-\dfrac{-2}{5}\)
b,\(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)
c,\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
d,\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Các câu dễ tự làm nha:
\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)