Violympic toán 7

H24

Tính

\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

AH
7 tháng 9 2018 lúc 18:41

Lời giải:

Đặt \(A=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow A+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}=\frac{1}{99.100}\)

\(\Leftrightarrow A+\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}=\frac{1}{99.100}\)

\(\Leftrightarrow A+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}=\frac{1}{99.100}\)

\(\Leftrightarrow A+1-\frac{1}{98}=\frac{1}{99.100}\Rightarrow A=\frac{1}{9900}-\frac{97}{98}\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
CP
Xem chi tiết
YT
Xem chi tiết
GJ
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
DX
Xem chi tiết
H24
Xem chi tiết