Tìm giá trị lớn nhất của A= \(\dfrac{2002}{\left|x\right|+2003}\)
Tính giá trị lớn nhất của:
A=\(\dfrac{2002}{\left|x\right|+2002}\)
B=\(\dfrac{\left|x\right|+2002}{-2003}\)
ĐK: \(x\in Z\)
a) Giải:
Để \(A\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)
Vậy giá trị lớn nhất của \(A\) là \(1\)
b) Để \(B\) đạt giá trị lớn nhất
\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất
Vì \(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)
Mà \(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất
\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)
\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)
Vậy giá trị lớn nhất của \(B\) là \(\dfrac{2002}{-2003}\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất
\(A=\dfrac{2022}{\left|x\right|+2003}\)
\(B=\left(\left|x\right|+1\right)^{10}+2009\)
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
Tìm giá trị lớn nhất của các biểu thức:
a) A=2002/|x|+2003
b)B=|x|+2002/-2003
a)Ta thấy:
\(\left|x\right|+2003\ge2003\)
\(\Rightarrow\frac{1}{\left|x\right|+2003}\le\frac{1}{2003}\)
\(\Rightarrow\frac{2002}{\left|x\right|+2003}\le\frac{2002}{2003}\)\(\Rightarrow A\le\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxA=\(\frac{2002}{2003}\Leftrightarrow x=0\)
b)Ta thấy:
\(-\left|x\right|\le0\)\(\Rightarrow-\left|x\right|+2002\le2002\)
\(\Rightarrow\frac{-\left|x\right|-2002}{2003}\le\frac{-2002}{2003}\Rightarrow B\le-\frac{2002}{2003}\)
Dấu = khi x=0
Vậy MaxB=\(-\frac{2002}{2003}\Leftrightarrow x=0\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
tìm giá trị lớn nhất :
a)A=2002 / Ix+2003|
b)B=IxI+2002 / -2003
Tìm giá trị nhỏ nhất:
a)C=IxI+2002/2003
b)D=-10/ (IxI+10)
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ai lm đc câu nào thì giúp mk với , cảm ơn !!
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)
tìm giá trị nhỏ nhất của A và giá trị lớn nhất của B:
A=\(|x-\dfrac{1}{2}|-3\)
B=\(\dfrac{2}{3}-\left|x-4\right|\)
a)Vì |x-1/2|≥0
|x-1/2|-3≥0-3
A=|x-1/2|-3≥-3
=>A≥-3
Dấu ''='' xảy ra khi
x-1/2=0
x=0+1/2
x=1/2
Vậy GTNN của biểu thức đã cho là -3 khi x=1/2
b)
Vì |x-4|≥0
-|x-4|≤0
=>2/3-|x-4|≤2/3-0
2/3-|x-4|≤2/3
=>B=2/3-|x-4|≤2/3
B≤2/3
Dấu ''='' xảy ra khi
x-4=0
x=0+4
x=4
Vậy GTLN của biểu thức là 2/3 khi x=4
Tìm giá trị lớn nhất của các biểu thức sau :
B = giá trị tuyệt đối của x + 2002/-2003
a)Ta thấy:
|x|+2003≥2003|x|+2003≥2003
⇒1|x|+2003≤12003⇒1|x|+2003≤12003
⇒2002|x|+2003≤20022003⇒2002|x|+2003≤20022003⇒A≤20022003⇒A≤20022003
Dấu = khi x=0
Vậy MaxA=20022003⇔x=0
Tìm x để biểu thức:
a) A= 0,6 + \(\left|\dfrac{1}{2}-x\right|\) đạt giá trị nhỏ nhất
b) B= \(\dfrac{2}{3}\) - \(\left|2x+\dfrac{2}{3}\right|\) đạt giá trị lớn nhất
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)