Những câu hỏi liên quan
PT
Xem chi tiết
EN
25 tháng 8 2016 lúc 20:12

khó was 

Bình luận (0)
QD
Xem chi tiết
LP
Xem chi tiết
LP
4 tháng 6 2023 lúc 8:34

Mình quên không nói là đề bài yêu cầu chứng minh 2 bổ đề trên.

 

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:21

a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)

b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)

Bình luận (0)
LH
Xem chi tiết
DN
12 tháng 10 2018 lúc 21:37

Ta c/m bđt

với \(x,y,z\ge1\) thì: \(\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\) (*)

dấu bằng xảy ra khi x=y=z

bđt (*) \(\Leftrightarrow\left(\frac{x+y}{1+z}+1\right)+\left(\frac{y+z}{1+x}+1\right)+\left(\frac{z+x}{1+y}+1\right)\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}+3\)

\(\Leftrightarrow\left(x+y+z+1\right)\left(\frac{1}{1+z}+\frac{1}{1+x}+\frac{1}{1+y}\right)\ge\frac{3+9\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\)

Ta có: \(1+x+y+z\ge1+3\sqrt[3]{xyz}\)(1)

Với \(x,y\ge1\) ta chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)(2)

\(\Leftrightarrow\frac{2+\left(x+y\right)}{1+\left(x+y\right)+xy}\ge\frac{2}{1+\sqrt{xy}}\Leftrightarrow2+\left(x+y\right)+2\sqrt{xy}+\sqrt{xy}\left(x+y\right)\ge2+2\left(x+y\right)+2xy\)

\(\Leftrightarrow2\sqrt{xy}\left(1-\sqrt{xy}\right)+\left(x+y\right)\left(\sqrt{xy}-1\right)\ge0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\ge0\)

bđt trên luôn đúng =>DPCM

đợi mình làm vế sau nữa nhé tại máy lag nên làm đk đến đây thôi xíu nữa hoặc mai mik làm vế sau cho nhé

Bình luận (0)
DN
12 tháng 10 2018 lúc 21:47

Với \(x,y,z\ge1\) ta chứng minh: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\) (3)

\(\Leftrightarrow P=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)

Áp dụng kết quả (2) ta thu được:

\(P\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{z\sqrt[3]{xyz}}}\ge\frac{4}{1+\sqrt[4]{xyz\sqrt[3]{xyz}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

Từ (1) và (3) suy ra (*) đúng

Trở lại bài toán: ta được bđt đã cho tưởng đương với:

\(\frac{\frac{1}{b}+\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}+\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{a}+\frac{1}{b}}{1+\frac{1}{c}}\ge\frac{\frac{6}{\sqrt[3]{abc}}}{1+\frac{1}{\sqrt[3]{abc}}}\)

Do x,y,z\(\le1\Rightarrow\frac{1}{x},\frac{1}{y},\frac{1}{z}\ge1\). Áp dụng (*) suy ra điều phải chứng minh dấu bằng xảy ra khi a=b=c

Bình luận (0)
H24
Xem chi tiết
NM
27 tháng 11 2021 lúc 21:10

1.

Đặt \(\left(x;y;z\right)=\left(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}\right)\Rightarrow\left\{{}\begin{matrix}1-x=\dfrac{b}{b+a}\\1-y=\dfrac{c}{b+c}\\1-z=\dfrac{a}{a+c}\end{matrix}\right.\)

\(\Rightarrow xyz=\dfrac{1}{8}\\ xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\\ \Rightarrow xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)-xyz\\ \Rightarrow2xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)=\dfrac{1}{4}\\ \Rightarrow x+y+z=\dfrac{3}{4}+xy+yz+zx\)

\(\RightarrowĐpcm\)

Bình luận (0)
NM
27 tháng 11 2021 lúc 21:17

2.

undefined

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết