H24

1, Giả sử a,b,c là các số thực khác 0 thỏa mãn (a+b)(b+c)(c+a)=8abc

CMR: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)

2,Cho đường tròn tâm O bán kính R=6cm và 1 điểm A cách O 1 khoảng 10cm. Từ A vẽ tiếp tuyến AB (B là tiếp điểm). Vẽ cát tuyến ACD, gọi I là trung điểm của đoạn CD. Hỏi khi chạy trên đường tròn thì I chạy trên đường nào?

NM
27 tháng 11 2021 lúc 21:10

1.

Đặt \(\left(x;y;z\right)=\left(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}\right)\Rightarrow\left\{{}\begin{matrix}1-x=\dfrac{b}{b+a}\\1-y=\dfrac{c}{b+c}\\1-z=\dfrac{a}{a+c}\end{matrix}\right.\)

\(\Rightarrow xyz=\dfrac{1}{8}\\ xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\\ \Rightarrow xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)-xyz\\ \Rightarrow2xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)=\dfrac{1}{4}\\ \Rightarrow x+y+z=\dfrac{3}{4}+xy+yz+zx\)

\(\RightarrowĐpcm\)

Bình luận (0)
NM
27 tháng 11 2021 lúc 21:17

2.

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AH
Xem chi tiết
HT
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết