Những câu hỏi liên quan
TN
Xem chi tiết
NT
26 tháng 8 2021 lúc 15:13

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

Bình luận (0)
TB
Xem chi tiết
KS
31 tháng 7 2018 lúc 21:00

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~

Bình luận (0)
LS
Xem chi tiết
DN
Xem chi tiết
OO
4 tháng 7 2016 lúc 17:29

\(\sqrt{27}+\sqrt{6}+1< \sqrt{48}\)

Bình luận (0)
DN
4 tháng 7 2016 lúc 17:33

Bạn chỉ mình cách làm đc k

Bình luận (0)
DN
Xem chi tiết
NT
4 tháng 7 2016 lúc 21:54

ta có: \(\sqrt{27}+\sqrt{6}+1=3\sqrt{3}+\sqrt{6}+1\)(1))

          \(\sqrt{48}=4\sqrt{3}=3\sqrt{3}+\sqrt{3}\)(2)

ta lại có: \(\sqrt{6}>\sqrt{3}\Rightarrow\sqrt{6}+1>\sqrt{3}\) (3)

từ (1)(2)và(3)\(\Rightarrow3\sqrt{3}+\sqrt{6}+1>3\sqrt{3}+\sqrt{3}\)

                   \(\Leftrightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Bình luận (0)
TN
Xem chi tiết
NT
23 tháng 8 2021 lúc 22:38

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

Bình luận (0)
YY
Xem chi tiết
QH
9 tháng 9 2016 lúc 12:38

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

Bình luận (0)
H24
Xem chi tiết
NL
30 tháng 7 2021 lúc 17:25

\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)

Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)

\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)

\(\Rightarrow A< B\)

Bình luận (0)
NT
31 tháng 7 2021 lúc 0:22

\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)

\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)

mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)

nên A<B

Bình luận (0)
ND
Xem chi tiết