Những câu hỏi liên quan
PA
Xem chi tiết
MP
20 tháng 7 2017 lúc 7:17

* \(2n=2560\Leftrightarrow n=\dfrac{2560}{2}=1280\) vậy \(n=1280\)

* \(3n=729\Leftrightarrow n=\dfrac{729}{3}=243\) vậy \(n=243\)

* \(4n=256\Leftrightarrow n=\dfrac{256}{4}=64\) vậy \(n=64\)

* \(2.2n=256\Leftrightarrow n=\dfrac{256}{2.2}=\dfrac{256}{4}=64\) vậy \(n=64\)

Bình luận (0)
HD
20 tháng 7 2017 lúc 7:40

\(2n=2560\Rightarrow n=1280\)

\(3n=729\Rightarrow n=243\)

\(4n=256\Rightarrow n=64\)

\(2.2n=256\Rightarrow n=64\)

Bình luận (0)
DD
Xem chi tiết
ST
25 tháng 7 2018 lúc 16:20

1, Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath

2, \(2n\left(16-n^4\right)=2n\left(1-n^4+15\right)=2n\left(1-n^2\right)\left(1+n^2\right)+30n=2n\left(1-n\right)\left(1+n\right)\left(n^2-4+5\right)+30n\)

\(=-2n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+10n\left(n-1\right)\left(n+1\right)=-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)

Vì n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 3;5 

Mà (3,5) = 1 

=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 15 

=> -2n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.15 = 30 (1)

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 3

=>10n(n-1)(n+1) chia hết cho 10.3 = 30 (2)

Từ (1) và (2) => \(-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\) hay \(2n\left(16-n^4\right)⋮30\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
ND
8 tháng 12 2021 lúc 11:27

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

Bình luận (0)
QK
Xem chi tiết
H24
Xem chi tiết
H24
8 tháng 2 2021 lúc 15:22

\(B=\lim\limits\dfrac{4n^2+3n+1}{\left(3n-1\right)^2}=\lim\limits\dfrac{\dfrac{4n^2}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{\dfrac{9n^2}{n^2}-\dfrac{6n}{n^2}+1}=\dfrac{4}{9}\)

Bình luận (2)
JE
Xem chi tiết
CG
10 tháng 2 2021 lúc 10:00

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

 

Bình luận (0)
DH
Xem chi tiết
HH
16 tháng 2 2021 lúc 19:01

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

Bình luận (0)
NL
Xem chi tiết
DH
Xem chi tiết
MH
11 tháng 2 2022 lúc 5:22

\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)

\(=n\times\dfrac{2}{3}=\)+∞

Bình luận (0)
HT
10 tháng 2 2022 lúc 22:42

A, 7.b dương vô cực

Bình luận (0)
MH
11 tháng 2 2022 lúc 5:15

\(a,lim\dfrac{7n^2-3n}{n^2+2}\)

\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)

\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)

Bình luận (0)
NF
Xem chi tiết
NT
24 tháng 7 2023 lúc 11:53

a: A=3n^2-n-3n^2+6n=5n chia hết cho 5

b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6

c: =n^3+2n^2+3n^2+6n-n-2-n^3+2

=5n^2+5n

=5(n^2+n) chia hết cho 5

Bình luận (0)