Cho các số x,y thỏa mãn \(x\ge0\) ; \(y\ge0\) và x + y = 1
Tìm GTLN và GTNN của \(A=x^2+y^2\)
cho các số x,y thỏa mãn \(x\ge0\), \(y\ge0\)và x+y =1 . tìm GTLN , GTNN của A = x2+y2
ADBDT Cauchy:
2(x^2+y^2)>=(x+y)^2
Dau = khi x=y
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
Cho x,y là các số thực thỏa mãn:\(x,y\ge0\) và 1=x^2+y^2.CMR: 1/căn 2<= x^3+y^3<=1
Giúp mk với ạ.<= là nhỏ hơn hoặc bằng nha
Lời giải;
Vế 1:
Áp dụng BĐT AM-GM:
$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$
$x^3+\frac{x}{2}\geq \sqrt{2}x^2$
$y^3+\frac{y}{2}\geq \sqrt{2}y^2$
$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$
$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
-----------------------
Vế 2:
$x^2+y^2=1$
$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$
$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$
$\Rightarrow x^3\leq x^2; y^3\leq y^2$
$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$
Cho \(x\ge0,y\ge0\) và thỏa mãn \(x+y=1\). Tìm giá trị lớn nhất của biểu thức: \(A=x^2y^2\left(x^2+y^2\right)\)
Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$
$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$
$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
Cho các số \(x\ge0,y\ge0,z\ge0\) và thỏa mãn
\(x\sqrt{11-2y^2}+y\sqrt{6-10z^2}+z\sqrt{10-5x^2}=8\)
Hãy tính giá trị biểu thức P=\(x^2+2y^2+5z^2\)
Áp dụng bdt cosi-schwar cho 3 số (\(\left(am+bn+cp\right)^2\le\left(a^2+b^2+c^2\right)\)\(\left(m^2+n^2+p^2\right)\)
với a=x,b=y\(\sqrt{2}\);c=z\(\sqrt{5}\); m=\(\sqrt{11-2y^2},n=\sqrt{3-5z^2}\),\(p=\sqrt{2-x^2}\)
82\(\le\left(x^2+2y^2+5z^2\right)\left(11-2y^2+3-5z^2+1-x^2\right)\) <=>64\(\le P\left(16-P\right)\)
<=>P2-16P+64\(\le0< =>\left(P-8\right)^2\le0\) <=>P=8
Cho các số \(x,y,z\ge0\)thỏa mãn \(x+y+z=1\)
TÌM MIN CỦA \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho bốn số thực a,b,x,y bất kì đồng thời thỏa mãn các điều kiện : \(x\ge a\ge0,y\ge b\ge0\) và \(\frac{x-y}{2}=\frac{a-b}{3}\) . . Tìm giá trị nhỏ nhất của P = (x + 2a)(y + 2b) theo a và b
Cho \(x,y\ge0\) thỏa mãn \(x+y=2.\)Chứng minh:
\(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le6\)
Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)
\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)
\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)
\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)
Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)
\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)
\(\Rightarrow P\le\sqrt{6}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)
cho các số thực \(x\ge0\)và \(y\ge0\)thỏa mãn \(x^3+y^3=x-y\)
tìm GTLN của P= \(x^2+y^2\)