Những câu hỏi liên quan
DH
Xem chi tiết
DH
Xem chi tiết
PP
Xem chi tiết
NT
22 tháng 1 2022 lúc 14:01

\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)

Bình luận (0)
TC
Xem chi tiết
KC
9 tháng 5 2021 lúc 16:50

đề hình như sai

 

Bình luận (0)
BB
Xem chi tiết
TH
10 tháng 3 2021 lúc 22:37

Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).

Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

Bình luận (0)
BB
10 tháng 3 2021 lúc 22:32

Với a, b>0 các bn nha

Bình luận (0)
HT
Xem chi tiết
DH
14 tháng 1 2018 lúc 14:53

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

Bình luận (0)
HT
14 tháng 1 2018 lúc 14:58

cảm ơn nhiều nha. chúng ta kết bạn được không?

Bình luận (0)
TB
14 tháng 1 2018 lúc 15:01

theo bđt bu-nhi-a cốp-xki thì

(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)

còn bạn chưa biết thì

<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3

,<=>a^2xb^4+b^2xa^4>=2a^3xb^3

<=>(axb^2-a^2xb)^2>=0(luôn đúng)

Bình luận (0)
TN
Xem chi tiết
DD
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Bình luận (0)
CN
Xem chi tiết
LD
18 tháng 4 2019 lúc 12:08

Sai đề

Bình luận (0)
TV
Xem chi tiết
HN
20 tháng 4 2017 lúc 9:48

Ta có: \(a^2+\dfrac{1}{4}\ge a\)

Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)

Cộng 3 cái vế theo vế ta được ĐPCM

Bình luận (0)