Những câu hỏi liên quan
YT
Xem chi tiết
NM
25 tháng 9 2021 lúc 16:37

\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)

Bình luận (0)
LL
25 tháng 9 2021 lúc 16:37

1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)

4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)

6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)

7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)

Bình luận (0)
LN
Xem chi tiết
H24
Xem chi tiết
TQ
11 tháng 6 2021 lúc 9:43

a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)   (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )

Khi đó pt :

<=> 7+a =3 + \(\sqrt{5}\)

<=> 4+a = \(\sqrt{5}\)

<=> (4+a)\(^2\) = 5

<=> 16 + 8a + a\(^2\) = 5

<=>a\(^2\) + 8a+ 11 = 0

<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại) 

Vậy Pt vô nghiệm.

b) \(\sqrt{3x^2-4x}\) = 2x-3

<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9 

<=> x\(^2\)-8x+9 = 0

<=> x=1 , x=9 

Vậy S={1;9} 

c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2

<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)

<=> x=7,x=5

Vậy x=5 hoặc x=7

 

Bình luận (0)
TL
Xem chi tiết
ML
26 tháng 6 2015 lúc 19:56

\(x^3=5\sqrt{2}+7+5\sqrt{2}-7+3\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)\left(\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}\right)\)

\(\Rightarrow x^3=10\sqrt{2}+3x\)

\(\Leftrightarrow\left(x-2\sqrt{2}\right)\left(x^2+2\sqrt{2}x+5\right)=0\)

\(\Leftrightarrow x=2\sqrt{2}\)(do \(x^2+2\sqrt{2}x+5=\left(x+\sqrt{2}\right)^2+3>0\))

Vậy \(x=2\sqrt{2}\)

Bình luận (0)
LL
Xem chi tiết
AT
4 tháng 7 2021 lúc 16:14

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)

 

 

Bình luận (0)
SP
Xem chi tiết
H24
Xem chi tiết
H24
4 tháng 9 2023 lúc 23:56

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)

\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)

\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)

\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)

\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)

\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)

Bình luận (1)
AH
4 tháng 9 2023 lúc 23:57

Lời giải:

a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$

$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$

$=3-\sqrt{7}$

c.

$=|x-3|=x-3$
d.

$=|1-x|=x-1$

$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.

$=\sqrt{(10a)^2}=|10a|=-10a$

 

Bình luận (0)
NH
Xem chi tiết
H24
20 tháng 8 2019 lúc 21:04

a) \(\frac{2}{4-3\sqrt{2}}-\frac{2}{4+3\sqrt{2}}\)

\(=\frac{2\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}-\frac{2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)

\(=\frac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)

\(=\frac{12\sqrt{2}}{-2}\)

\(=-6\sqrt{2}\)

b) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}-\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2-\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\frac{4\sqrt{35}}{2}\)

\(=2\sqrt{35}\)

Bình luận (0)
YT
Xem chi tiết
NT
9 tháng 10 2021 lúc 23:20

1: ta có: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)

\(=3+2\sqrt{2}+\sqrt{5}-2\)

\(=2\sqrt{2}+\sqrt{5}+1\)

2: Ta có: \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}\)

\(=4\sqrt{2}\)

Bình luận (0)