H24

tính

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(\sqrt{\left(x-3\right)^2}\left(x>3\right)\)

\(\sqrt{\left(1-x\right)^2}\left(x>1\right)\)

\(\sqrt{9a^4}\)

\(\sqrt{100a^2}\left(a< 0\right)\)

H24
4 tháng 9 2023 lúc 23:56

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)

\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)

\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)

\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)

\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)

\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)

Bình luận (1)
AH
4 tháng 9 2023 lúc 23:57

Lời giải:

a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$

$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$

$=3-\sqrt{7}$

c.

$=|x-3|=x-3$
d.

$=|1-x|=x-1$

$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.

$=\sqrt{(10a)^2}=|10a|=-10a$

 

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết
YT
Xem chi tiết
HN
Xem chi tiết
HH
Xem chi tiết
2S
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết