Tìm GTLN GTNN y=\(\sqrt{5-2cos^2xsin^2x}\)
Tìm GTLN và GTNN:
1.\(y=\sqrt{5-2cos^2x.sin^2x}\)
2.\(y=1+\dfrac{1}{2}sin2x.cos2x\)
3.\(y=\sqrt{1+sinx}-3\)
4.\(y=\sqrt{2+sin^22x}\)
1.
\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)
Dễ thấy:
$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$
Vậy $y_{\max}=\sqrt{5}$
$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$
Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$
2.
$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$
$=1+\frac{1}{4}\sin 4x$
Vì $-1\leq \sin 4x\leq 1$
$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$
$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$
3.
$\sin x\geq -1\Rightarrow \sqrt{1+\sin x}\geq 0$
$\Rightarrow y\geq -3$
Vậy $y_{\min}=-3$
$\sin x\leq 1\Rightarrow \sqrt{1+\sin x}\leq \sqrt{2}$
$\Rightarrow y\leq \sqrt{2}-3$
Vậy $y_{\max}=\sqrt{2}-3$
Hộ mình tìm GTLN,GTLN của hàm số sau
\(1.y=\sqrt{5-2cos^2xsin^2x}\)
\(2.y=cos^2x+2cos2x\)
\(3.y=sin^2x-4sinx+3\)
\(4.y=2\sqrt{s\text{inx}}+3\)
\(5.y=\sqrt{1+c\text{os}\left(4x\right)^2}-2\)
1.
\(y=\sqrt{5-\frac{1}{2}\left(2sinx.cosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)
Do \(0\le sin^22x\le1\) \(\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)
\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)
\(y_{max}=\sqrt{5}\) khi \(sin2x=0\)
2.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2\) khi \(cosx=0\)
\(y_{max}=3\) khi \(cos^2x=1\)
3.
\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)
\(\Rightarrow y_{min}=0\) khi \(sinx=1\)
\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)
\(y_{max}=8\) khi \(sinx=-1\)
4.
\(0\le\sqrt{sinx}\le1\Rightarrow3\le y\le5\)
\(y_{min}=3\) khi \(sinx=0\)
\(y_{max}=5\) khi \(sinx=1\)
5.
Đề là \(cos^24x\) hay \(cos\left(\left(4x\right)^2\right)\)
Hai biểu thức này cho 2 kết quả khác nhau
vì sao \(\sqrt{5-2cos^2xsin^2x}=\sqrt{5-\dfrac{1}{2}sin^22x}\) mong mn giúp
Theo công thức lượng giác thì \(\sin 2x=2\sin x\cos x\Rightarrow 2\sin ^2x\cos^2x=\frac{1}{2}\sin ^22x\)
Do đó ta có công thức như trên.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm gtln
\(\sqrt{1+2cos^2x}\) + \(\sqrt{1+3sin^2x}\) =y
\(y=\sqrt{1+2cos^2x}+\sqrt{1+3\left(1-cos^2x\right)}=\sqrt{1+2cos^2x}+\sqrt{4-3cos^2x}\)
\(y=\sqrt{2}.\sqrt{\dfrac{1}{2}+cos^2x}+\sqrt{3}.\sqrt{\dfrac{4}{3}-cos^2x}\)
\(y\le\sqrt{\left(2+3\right)\left(\dfrac{1}{2}+cos^2x+\dfrac{4}{3}-cos^2x\right)}=\dfrac{\sqrt{330}}{6}\)
\(y_{max}=\dfrac{\sqrt{330}}{6}\) khi \(cos^2x=\dfrac{7}{30}\)
Tìm GTLN, GTNN
a. y= 1+ \(\sqrt{2cos^2x+1}\)
b. y= 1 + 3sin(2x - \(\frac{\pi}{4}\))
c. y= 3 - 2cos23x
d. y= 1 + \(\sqrt{2+sin2x}\)
e. y= \(\frac{4}{2+sin^{2^{ }}x}\)
a.
\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(cosx=0\)
\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)
b.
\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)
\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)
c.
\(0\le cos^23x\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(cos^23x=1\)
\(y_{max}=3\) khi \(cos3x=0\)
d.
\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)
\(y_{min}=2\) khi \(sin2x=-1\)
\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)
e.
\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)
\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)
\(y_{max}=2\) khi \(sinx=0\)
Tìm GTLN và GTNN của hàm số: \(y=\sqrt{3-2x}+\sqrt{5-2x}\)
Lời giải:
ĐKXĐ: \(x\leq \frac{3}{2}\)
Hàm số chỉ có min chứ không có max bạn nhé.
\(y=\sqrt{3-2x}+\sqrt{5-2x}\)
\(\Rightarrow y^2=3-2x+5-2x+2\sqrt{(3-2x)(5-2x)}\)
\(=8-4x+2\sqrt{(3-2x)(5-2x)}\)
Ta thấy:
Vì \(x\leq \frac{3}{2}\Rightarrow 8-4x\geq 8-4.\frac{3}{2}=2\)
\(2\sqrt{(3-2x)(5-2x)}\geq 0\) (theo tính chất căn bậc 2)
\(\Rightarrow y^2=8-4x+2\sqrt{(3-2x)(5-2x)}\geq 2\)
\(\Rightarrow y\geq \sqrt{2}\) (do $y$ không âm)
Vậy $y_{\min}=\sqrt{2}$ khi $x=\frac{3}{2}$
Em mới học dạng này sơ sơ thôi nên không rành lắm, mọi người check giúp ạ.
ĐK x =< 3/2
Xét \(x_1< x_2\le\frac{3}{2}\)
\(y=f\left(x\right)=\sqrt{3-2x}+\sqrt{5-2x}\)
Ta có: \(f\left(x_1\right)-f\left(x_2\right)=\left(\sqrt{3-2x_1}-\sqrt{3-2x_2}\right)+\left(\sqrt{5-2x_1}-\sqrt{5-2x_2}\right)>0\)(do dễ thấy(em lười viết ra quá) rằng mỗi cái ngoặc đều lớn hơn 0)
Do đó f(x1) > f(x2). Do vậy x càng tăng thì giá trị f(x) càng nhỏ hay y đạt cực tiểu tại x = 3/2. Vậy \(y_{min}=\sqrt{3-2.\frac{3}{2}}+\sqrt{5-2.\frac{3}{2}}=\sqrt{2}\)
Đẳng thức xảy ra khi x = 3/2
Vậy...
Tìm GTLN và GTNN của hàm số
a, \(y=\dfrac{sinx+2cosx+3}{2+cosx}\)
b,\(y=2cos^2x-2\sqrt{3}sinxcosx+1\)
c, \(y=\sqrt[4]{sinx}-\sqrt{cosx}\)
a) làm tương tự 2 bài mk đã giải nha.
b) \(y=2\cos^2x-2\sqrt{3}\sin x\cos x+1\)
\(=1-\left(\cos2x+\sqrt{3}\sin2x\right)\)
Lại có \(-2\le\cos2x+\sqrt{3}\sin2x\le2\) \(\Rightarrow-1\le y\le3\)
c) Vì \(\left\{{}\begin{matrix}0\le\sqrt[4]{\sin x}\le1\\0\le\sqrt{\cos x}\le1\end{matrix}\right.\)
Do đó \(-1\le y\le1\)
Tìm GTLN, GTNN của hàm số:
\(y=\sqrt{5sin^2x+1}+\sqrt{5cos^2x+1}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)
\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)
\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)
\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)
Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)
\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)
\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)