Những câu hỏi liên quan
H24
Xem chi tiết
H24
28 tháng 8 2018 lúc 11:44

Mình tưởng phải là tam giác vuông mới có cos chứ. 

Bình luận (0)
H24
28 tháng 8 2018 lúc 20:03

kẻ đường cao tạo ra tam giác vuông là được mà

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 8 2022 lúc 20:10

Xét ΔABC có 

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow\dfrac{AB}{2AC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow AB^2=AB^2+AC^2-BC^2\)

=>CA=CB

=>ΔCAB cân tại C

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
NT
26 tháng 1 2024 lúc 22:23

a: Xét ΔAEB và ΔAEF có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)

AB=AF

Do đó: ΔAEB=ΔAEF

b: Sửa đề: Chứng minh MB=MF

Ta có: ΔABE=ΔAFE

=>AB=AF

=>ΔABF cân tại A

Ta có: ΔABF cân tại A

mà AM là đường phân giác

nên M là trung điểm của BF và AM\(\perp\)BF

M là trung điểm của BF nên MB=MF

AM\(\perp\)BF tại M

=>AE\(\perp\)BF tại M

c: ta có: ΔABE=ΔAFE

=>\(\widehat{ABE}=\widehat{AFE}\)

Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)

\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABE}=\widehat{AFE}\)

nên \(\widehat{EBD}=\widehat{EFC}\)

Ta có: AB+BD=AD

AF+FC=AC

mà AB=AF và AD=AC

nên BD=FC

Xét ΔEBD và ΔEFC có

EB=EF

\(\widehat{EBD}=\widehat{EFC}\)

BD=FC

Do đó: ΔEBD=ΔEFC

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

ta có: AD=AC

=>A nằm trên đường trung trực của DC(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của DC(3)

Từ (1),(2),(3) suy ra A,E,K thẳng hàng

Bình luận (1)
H24
Xem chi tiết
NT
26 tháng 8 2022 lúc 11:27

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{AB}{2\cdot AC}\)

\(\Leftrightarrow AB^2+AC^2-BC^2=AB^2\)

=>AC=BC

=>ΔCAB can tại C

Bình luận (0)
H24
Xem chi tiết
NA
17 tháng 12 2021 lúc 16:50

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

Bình luận (0)
TM
17 tháng 12 2021 lúc 17:01

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)

Bình luận (0)
DM
Xem chi tiết
LL
Xem chi tiết
VT
12 tháng 5 2017 lúc 14:59

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

Bình luận (0)
LL
12 tháng 5 2017 lúc 15:20

mình lên rồi nhưng ko có

Bình luận (0)
BC
2 tháng 7 2018 lúc 10:25

A, Chứng Minh 

B, Có sẵn điều kiện

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 4 2021 lúc 18:16

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

Bình luận (3)
NL
22 tháng 4 2021 lúc 18:17

undefined

Bình luận (0)
NL
22 tháng 4 2021 lúc 18:29

2.

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)-\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{z^3}\)

\(=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3-\dfrac{3}{xy}\left(-\dfrac{1}{z}\right)+\dfrac{1}{z^3}\)

\(=\left(-\dfrac{1}{z}\right)^3+\dfrac{3}{xyz}+\dfrac{1}{z^3}\)

\(=-\dfrac{1}{z^3}+\dfrac{3}{xyz}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

Do đó:

\(P=\dfrac{2017}{3}xyz.\dfrac{3}{xyz}=2017\)

Bình luận (0)