Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
PN
15 tháng 11 2015 lúc 22:44

Dùng phép khai triển. 

Bình luận (0)
VD
Xem chi tiết
TQ
24 tháng 11 2018 lúc 17:02

Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)

Bình luận (0)
TM
Xem chi tiết
PM
Xem chi tiết
NT
14 tháng 1 2021 lúc 21:49

\(-\left(-a+b+c\right)+\left(b-c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)

\(a-b-c+b-c-1=b-c+6-7+a-b+c\)

\(a-2c-1=a-1\)

\(-2c\ne0\)hay đẳng thức ko xảy ra 

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
KK
28 tháng 10 2020 lúc 21:16

Gợi ý thôi.

\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)

\(\Rightarrow x^3-ax^2+bx-c\)có ba nghiệm \(x=a,x=b,x=c\)

Theo định lí Vi-et:\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\ab+bc+ca=b\\c\left(ab-1\right)=0\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
28 tháng 10 2020 lúc 21:22

okeee cam on ban

Bình luận (0)
 Khách vãng lai đã xóa
QT
Xem chi tiết
NL
3 tháng 1 2020 lúc 0:21

\(a^3+a^3+1\ge3a^2\Rightarrow a^3+\frac{1}{2}\ge\frac{3}{2}a^2\)

\(\Rightarrow VT+\frac{3}{2}\ge\frac{3}{2}a^2+\frac{3}{2}b^2+\frac{3}{2}c^2+ab+bc+ca\)

\(\Rightarrow VT+\frac{3}{2}\ge a^2+b^2+c^2+\frac{1}{2}\left(a+b+c\right)^2\)

\(\Rightarrow VT+\frac{3}{2}\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2=\frac{15}{2}\)

\(\Rightarrow VT\ge\frac{15}{2}-\frac{3}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 1 2020 lúc 18:38

Sau khi đưa BĐT về dạng thuần nhất ta có:

\(VT-VP=\frac{1}{18} \sum\limits_{cyc} (7a+7b+c)(a-b)^2 \geq 0\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết