Tính nhanh
4x2-9y2 với x=26,y=16
Tính nhanh giá trị của đa thức
a) A=y2-1/2y+1/16 tại y = 100, 25;
b) B = 4x2 - 9y2 - 6y - 1 tại x = 23;y=1
\(a,A=y^2-\dfrac{1}{2}y+\dfrac{1}{16}\)
\(=y^2-2.y.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\)
\(=\left(y-\dfrac{1}{4}\right)^2\)
Với \(y=100,25\), ta được:
\(A=\left(100,25-\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{401}{4}-\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{400}{4}\right)^2=100^2=10000\)
\(------\)
\(b,B=4x^2-9y^2-6y-1\)
\(=\left(2x\right)^2-\left[\left(3y\right)^2+2.3y.1+1\right]\)
\(=\left(2x\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
Với \(x=23;y=1\), ta được:
\(B=\left(2.23-3.1-1\right)\left(2.23+3.1+1\right)\)
\(=\left(46-4\right)\left(46+4\right)\)
\(=42.50=2100\)
Tính giá trị của biểu thức:
a) N= (25x2 + 10xy + 4y2)(5x - 2y) tại x=1/5:y=1/2
b) Q= (x + 3y)(x2 - 3xy + 9y2) tại x=y=1/2
Giúp mik với ạ!
a: \(N=\left(5x\right)^3-\left(2y\right)^3=1^3-1^3=0\)
b: \(Q=x^3+27y^3=\dfrac{1}{8}+\dfrac{27}{8}=\dfrac{28}{8}=\dfrac{7}{2}\)
mn ơi , giải và điền những con số lên dấu gạch em bài này
a) x2 + 20x + ______ = ( ____+____)
b) ( 16x2 + ___ + 9y2 ) + ( ___ + ___ )2
c) y2 - ____ + 49 = ( ___ - ___ )2
d) ___ - 42xy + 49 xy2 = (___-___)2
e) ___ - 9y2 = ( 2x + ___ ) (___ + x)
f) 16 - _____ = ( ___ - 1 ) ( ___ + x )
g) 49x2 - ____ = ( ____ - 1 ) ( ___ + 1)
h) ___ - 25 = ( 4x - ____ ) ( 4x - _____ )
i) 8x3 + ___ + ____ + 27y3 = ( ___ +___)3
k) x3 - ___ + ___ - ___ = ( ___ - 2y )3
l) ( 2a + 3b ) ( ___ - ___ + ___ ) = ___ + ___
m) ( 3x - ___ ) ( ___ + ___ + 16y2 ) = ___ - ___
a.
$x^2+20x+100=(x+10)^2$
b.
$16x^2+24xy+9y^2=(4x+3y)^2$
c.
$y^2-14y+49=(y-7)^2$
d.
$9x^2-42xy+49y^2=(3x-7y)^2$
e.
$4x^2-9y^2=(2x-3y)(2x+3y)$
f.
$16-x^2=(4-x)(4+x)$
g.
$49x^2-1=(7x-1)(7x+1)$
h.
$16x^2-25=(4x-5)(4x+5)$
i.
$8x^3+24x^2y+54xy^2+27y^3=(2x+3y)^3$
k.
$x^3-6x^2y+12xy^2-8y^3=(x-2y)^3$
l.
$(2a+b)(4a^2-2ab+b^2)=(2a)^3+b^3=8a^3+b^3$
m.
$(3x-4y)(9x^2+12xy+16y^2)=(3x)^3-(4y)^3=27x^3-64y^3$
A=x3+15x2+75x+125 với x=-10
B=4x2+12xy+9y2 tại x =1,y =2
\(A=x^3+15x^2+75x+125=\left(x+5\right)^3=-125\)
\(B=4x^2+12xy+9y^2=\left(2x+3y\right)^2=\left(3+6\right)^2=81\)
Câu 2 Tính giá trị của biểu thức A = x2 - 6xy + 9y2 - 15 tại x = 37 ; y = -1
Lời giải:
$A=(x-3y)^2-15=[37-3(-1)]^2-15=40^2-15=1585$
chứng tỏ
a) x2 + 8y2 =( x +2y ) ( x2- 2xy +4y2)
b) (x-y) (x2+xy+y2 ) -3xy (x-y) =( x-y)3
c) (x-3y) (x2 +3xy +9y2 ) - ( 3y +x ) ( 9y2 -3xy + x2) = -54y3
cíu em vớii
\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)
\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)
Tính giá trị của biểu thức:
a) P = 1 2 x 2 y 2 ( 2 x + y ) ( 2 x − y ) tại x = 1 và y = 1 2 .
b) Q = (x + 3y)( x 2 – 3 xy + 9 y 2 )tại x = 1 2 và y = 1 2 .
a) Kết quả P = 15 2 ; b) Kết quả Q = 7 2 .
10) x(x-y)+x2-y2
11) x2 -y2 +10x-10y
12) x2-y2 +20x+20y
13) 4x2 -9y2-4x-6y
14) x3-y3+7x2-7y2
15) x3+4x-(y3+4y)
16) x3+y3+2x+2y
17) x3-y3-2x2y+2xy2
18) x3-4x2+4x-xy2
10: \(x\left(x-y\right)+x^2-y^2\)
\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+x+y\right)\)
\(=\left(x-y\right)\left(2x+y\right)\)
11: \(x^2-y^2+10x-10y\)
\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+10\right)\)
12: \(x^2-y^2+20x+20y\)
\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)
\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+20\right)\)
13: \(4x^2-9y^2-4x-6y\)
\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)
\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)
\(=\left(2x+3y\right)\left(2x-3y-2\right)\)
14: \(x^3-y^3+7x^2-7y^2\)
\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)
15: \(x^3+4x-\left(y^3+4y\right)\)
\(=x^3-y^3+4x-4y\)
\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)
16: \(x^3+y^3+2x+2y\)
\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)
17: \(x^3-y^3-2x^2y+2xy^2\)
\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)
\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)
18: \(x^3-4x^2+4x-xy^2\)
\(=x\left(x^2-4x+4-y^2\right)\)
\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)
\(=x\left[\left(x-2\right)^2-y^2\right]\)
\(=x\left(x-2-y\right)\left(x-2+y\right)\)
Phân tích đa thức thành nhân tử nha
Phân tích đa thức thành nhân tử:
16 - 9y2 + y2 + 8y
Giúp với ạ, em cảm ơn
\(=\left(y+4\right)^2-9x^2=\left(y-3x+4\right)\left(y+3x+4\right)\)
16 - 9y^2 + y^2 + 8y
= ( 4 + y ) - ( 3x )^2
= ( 4 + y + 3x ) ( 4 + y - 3x )
16-9y2+y2+8y
= (16+8y+y2)-9y2
= (42+2.4.y+y2)-9y2
= (4+y)2-(3y)2
= (4+y-3y)(4+y+3y)
= (4-2y)(4+4y)