x^8+12x^5-2x^4+26x^2-12x-99
Thực hiện phép chia:
1. (-3x3 + 5x2 - 9x + 15) : ( 3x + 5)
2. ( 5x4 + 9x3 - 2x2 - 4x - 8) : ( x-1)
3. ( 5x3 + 14x2 + 12x + 8 ) : (x + 2)
4. ( x4 - 2x3 + 2x -1 ) : ( x2 - 1)
5. ( 5x2 - 3x3 + 15 - 9x ) : ( 5 - 3x)
6. ( -x2 + 6x3 - 26x + 21) : ( 3 -2x )
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
Tìm x biết
26x3 = 6x2 + 12x + 8
Lời giải:
Vì tổng hệ số của biểu thức vế trái và vế phải bằng nhau nên ta đoán luôn được pt có 1 nghiệm bằng $1$
\(26x^3=6x^2+12x+8\)
\(\Leftrightarrow 26x^3-6x^2-12x-8=0\)
\(\Leftrightarrow (26x^3-26x^2)+(20x^2-20x)+(8x-8)=0\)
\(\Leftrightarrow 26x^2(x-1)+20x(x-1)+8(x-1)=0\)
\(\Leftrightarrow (x-1)(26x^2+20x+8)=0\)
Vì \(26x^2+20x+8=(5x+2)^2+x^2+4>0, \forall x\)
Do đó: \(x-1=0\Rightarrow x=1\)
GIẢI PT: 1) -2x^4 + 8x^3 - 3x^2 - 4x +4 =0
2) -3x^4 + 12x^3 - 26x^2 + 28x +8 =0
3) -2x^4 +12x^3 - 15x^2 -9x -1 =0
4) 3x^4 - 5x^3 - 16x^2+ 15x + 27 =0
mk mới lớp 6 thôi ,lớp 9 mình .......mình.........chịu (I VERY SORRY YOU!!)
mình lớp 9 nhưng mình lười giải vì " QUÁ NHIỀU " lười viết
Tìm giá trị nhỏ nhất của
2x2+4x-63x2+5x+9x4-10x3+26x2-10x+30 Tìm giá trị lớn nhất của-x2-2x+44x2+4x-3-3x2-2x+15-12x-5x2(x-1).(x-4).(x-5).(x-8)Thực hiện phép tính:
a)-2x.(3x+4)+(2x+5).(9-7x)
b)(x-5)2-(4-x).(4+x)
c)(4x2-12x+8):(x-2)
Cho phương trình \(\frac{x^5-9x^4+27x^3-26x^2-12x+24}{x^3-6x^2+12x-8}=0\)
Tính tổng \(A=\frac{1}{x_1^{10}}+\frac{1}{x_2^{10}}+...\) , trong đó \(x_1,x_2,...\)là các nghiệm của phương trình trên
\(\text{ĐK: }x^3-6x^2+12x-8=\left(x-2\right)^3\ne0\Leftrightarrow x\ne2\)
\(pt\Leftrightarrow\frac{\left(x-2\right)^3\left(x^2-3x-3\right)}{\left(x-2\right)^3}=0\Leftrightarrow x^2-3x-3=0\)
Vậy pt có 2 nghiệm \(a;b\) thỏa \(a+b=3;\text{ }a.b=-3\text{ (Vi-et)}\)
\(A=\frac{1}{a^{10}}+\frac{1}{b^{10}}=\frac{a^{10}+b^{10}}{\left(ab\right)^{10}}=\frac{\left(a^5+b^5\right)^2-2a^5b^5}{\left(-3\right)^{10}}\)
Ta có: \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[\left(a^4+b^4+2a^2b^2\right)-a^2b^2-ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)\left[\left(a^2+b^2\right)^2-ab\left(a^2+b^2\right)-a^2b^2\right]\)
\(=\left(a+b\right)\left\{\left[\left(a+b\right)^2-2ab\right]^2-ab\left[\left(a+b\right)^2-2ab\right]-\left(ab\right)^2\right\}\)
\(=3\left[\left(3^2-2.\left(-3\right)\right)^2-\left(-3\right)\left(3^2-2.\left(-3\right)\right)-\left(-3\right)^2\right]\)
\(=783\)
\(A=\frac{783^2-2\left(-3\right)^5}{3^{10}}=\frac{2525}{243}\)
Giải các pt sau:
\(\dfrac{5}{x^2-2x+2}-\dfrac{8}{x^2-2x+5}=3\)
\(\dfrac{x^2-4x+3}{2x}+\dfrac{x^2+12x+3}{x^2+3}=4\)
Tìm tổng các hệ số của đa thức sau khi phá ngoặc:
f(x)= (3x^2-12x+8)^111*(4x^5+3x^4+2x^3+x^2-12x+1)^2222
Khi phá ngoặc của của đa thức f(x) ta sẽ được đa thức \(f\left(x\right)=a_1x^n+a_2x^{n-1}+a_3x^{n-2}+...+a_{n-1}x+a_n\)(với n là bậc của đa thức)
Ta có:\(f\left(1\right)=a_1+a_2+a_3+...+a_{n-1}+a_n\)
Mà \(f\left(1\right)=\left(3-12+8\right)^{111}\cdot\left(4+3+2+1-12+1\right)^{2222}\)\(=-1\)
Suy ra:\(a_1+a_2+a_3+...+a_{n-1}+a_n=-1\)
Vậy tổng các hệ số của đa thức sau khi phá ngoặc là -1
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)