Tìm nghiệm nguyên của pt (x^2 +1)^2 -x^2 =y^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
Tìm nghiệm nguyên của pt (x+y)^2=(x-1).(y+1)
Dễ mà :v
PT <=> 2x2 + 2y2 + 2xy - 2x + 2y = 0
<=> (x - 1)2 + (y + 1)2 + (x + y)2 = 0
=> x = 1; y = -1.
Tìm nghiệm nguyên dương của pt: 2^x +(x^2+1)(y^2-6y+8)=0.
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
Tìm nghiệm nguyên của PT: x + √[x+1/2√(x+1/4)] = y
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
Ta có: x^2+(x+1)^2=y^4+(y+1)^4
<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1)
<=> x^2 +x + 1 = {y(y+1) +1}^2
Do VP là SCP, ta có:
* Nếu x >=0
=> x^2 < x^2 +x + 1 <= (x+1)^2
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2
=> x =0 => y=0 hay y=-1
* Nếu x <0 hay x <= -1 (do x nguyên)
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2
=> Để VT là SCP
=> (x+2)^2 = x^2 + x +1
=> x=-1 => y=0 hay y=-1
@_@
Tìm nghiệm nguyên của pt 2(x+y)+1=3xy
\(2\left(x+y\right)+1=3xy\)
=>\(2x+2y-3xy=1\)
=>\(x\left(-3y+2\right)+2y=1\)
=>\(-x\left(3y-2\right)+2y-\dfrac{4}{3}=-\dfrac{1}{3}\)
=>\(-3x\left(y-\dfrac{2}{3}\right)+2\left(y-\dfrac{2}{3}\right)=-\dfrac{1}{3}\)
=>\(-3x\left(3y-2\right)+2\left(3y-2\right)=-1\)
=>\(\left(3y-2\right)\left(-3x+2\right)=-1\)
=>\(\left(3x-2\right)\left(3y-2\right)=1\)
=>\(\left(3x-2;3y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)
mà x,y nguyên
nên (x,y)=(1;1)
tìm nghiệm nguyên của pt \(y^2=x^3-3x^2+x+2\)
Tìm nghiệm nguyên của PT: \(1+x+x^2+x^3=2^y\)
ta có:
\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)
\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)
<=>x=0=>2y=1=>y=0
Vậy nghiệm của pt:(x;y)=(0;0)
Tìm nghiệm nguyên của PT:
x2=y(y+1)(y+2)(y+3)
\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé
tìm nghiệm nguyên của pt x^2 + x + 6 = y^2
\(x^2+x+6=y^2\)
\(\Leftrightarrow x^2+x+6-y^2=0\)
\(\Leftrightarrow4\left(x^2+x+6-y^2\right)=4\cdot0\)
\(\Leftrightarrow4x^2+4x+24-4y^2=0\)
\(\Leftrightarrow\left(4x^2+2x+4xy\right)+\left(2x+1+2y\right)-\left(4xy+2y+4y^2\right)+23=0\)
\(\Leftrightarrow2x\left(2x+1+2y\right)+\left(2x+1+2y\right)-2y\left(2x+1+2y\right)+23=0\)
\(\Leftrightarrow\left(2x+1+2y\right)\cdot\left(2x+1-2y\right)+23=0\)
\(\Leftrightarrow\left(2x+1+2y\right)\cdot\left(2x+1-2y\right)=-23\)
Ta có bảng:
2x + 1 + 2y | 1 | -1 | 23 | -23 |
2x + 1 - 2y | -23 | 23 | -1 | 1 |
x | -6 | 5 | 5 | -6 |
y | 6 | -6 | 6 | -6 |
TM | TM | TM | TM |
Vậy ...