TÌM GTLN hoặc GTNN
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Tìm GTLN hoặc GTNN
\(C=\left|2x-\dfrac{3}{5}\right|+1,\left(3\right)\)
\(D=\left|x-3\right|+\left|x+2\right|\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Tìm GTNN (hoặc GTLN):
\(\left(x^2-x\right)\left(x^2+3x+2\right)\)
Tìm GTLN (giá trị lớn nhất) hoặc GTNN(giá trị nhỏ nhất)của:
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Tìm GTNN của : \(F=\left(3x-5\right)^2-6\left|3x-5\right|+10\)
Tìm GTLN : \(I=\dfrac{\left(5x+8\right)\left(2x+5\right)}{x}\left(x>0\right)\)
đặt |3x-5|= y ,ĐK : y >/ 0
F=y2-6y+10 đến đây đơn giản
ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)
tìm GTNN hoặc GTLN của D = \(\dfrac{\left|x\right|+2023}{\left|x\right|+2022}\)
\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)
Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left|x\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)
\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)
Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)
Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0