cho a,b,c>0 Sao cho a+b+c=3
CMR \(\dfrac{a^3}{a+2b^3}+\dfrac{b^3}{b+2c^3}+\dfrac{c^3}{c+2a^3}\ge1\)
Bài 1: Cho a,b,c là những số dương thỏa mãn: a+b+c=3
CMR: \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
Bài 2: Cho a, b, c thỏa mãn: ab+bc+ca=3
CMR: \(\dfrac{a}{2b^3+1}+\dfrac{b}{2c^3+1}+\dfrac{c}{2a^3+1}\ge1\)
Bài 3: Cho a, b, c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+3b\)
Dấu = xảy ra khi a=b=2c
Cho a,b,c >0 thõa mãn a+b+c = 3
\(CMR:\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)
\(abc\le1\)
\(VT=\sum\dfrac{a^4}{2abc+a^2b}\ge\dfrac{\sum^2a^2}{6+\sum a^2b}\ge\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\)
Ta cần chứng minh :
\(\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\ge1\)
Đặt \(\sum a^2=t\left(t\ge3\right)\)
\(\Rightarrow\dfrac{t^2}{6+\sqrt{\dfrac{1}{3}t^3}}\ge1\Leftrightarrow t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge6\)
Thật vậy :
\(t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge3\sqrt{3}\left(\sqrt{3}-\dfrac{1}{\sqrt{3}}\right)=6\left(t\ge3\right)\)
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
Dấu >= hay <= vậy bạn? Bạn xem lại đề.
Cho a, b, c > 0. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)≥\(\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)
Cho a,b,c >0, chứng minh rằng :\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{... - Hoc24
Cho a + b + c = 3 và a, b, c > 0. CMR:
\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^2}{a+2b^2}+\dfrac{a+2b^2}{9}\ge2\sqrt{\dfrac{a^2}{a+2b^2}\cdot\dfrac{a+2b^2}{9}}=\dfrac{2a}{3}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT+\dfrac{a+b+c+2\left(a^2+b^2+c^2\right)}{9}\ge\dfrac{2}{3}\left(a+b+c\right)\)
\(\Leftrightarrow VT+\dfrac{3+2\cdot\dfrac{\left(a+b+c\right)^2}{3}}{9}\ge\dfrac{2}{3}\cdot3\)
\(\Leftrightarrow VT+1\ge2\Leftrightarrow VT\ge1\)
\("="\Leftrightarrow a=b=c=1\)
WLOG \(a\ge b \ge c\)
Chebyshev: \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)
\(\Rightarrow a^3+b^3+c^3\le a^4+b^4+c^4\)
Cauchy-Schwarz: \(VT=\dfrac{a^4}{a^3+2a^2b^2}+\dfrac{b^4}{b^3+2b^2c^2}+\dfrac{c^4}{c^3+2a^2c^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=1=VP\)
Cho \(a,b,c>0\) và \(a+b+c=3\). CMR : \(P=\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)
giúp nha mn :==|_T-T
\(P=\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)
Áp dụng BĐT Cô-si vào 3 số dương ta có :
\(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b}{3}+\dfrac{2c+a}{9}\ge3\sqrt[3]{\dfrac{a^3}{b\left(2c+a\right)}.\dfrac{b}{3}.\dfrac{2c+a}{9}}=a\) ( 1 )
Tương tự ta có :
\(\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c}{3}+\dfrac{2a+b}{9}\ge3\sqrt[3]{\dfrac{b^3}{c\left(2a+b\right)}.\dfrac{c}{3}.\dfrac{2a+b}{9}}=b\) ( 2 )
\(\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{a}{3}+\dfrac{2b+c}{9}\ge3\sqrt[3]{\dfrac{c^3}{a\left(2b+c\right)}.\dfrac{a}{3}.\dfrac{2b+c}{9}}=c\) ( 3 )
Cộng từng vế của ( 1 ) ( 2 ) và ( 3 ) ta có :
\(\dfrac{a^3}{c\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}\left(a+b+c\right)\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}.3\ge3\)
\(\Leftrightarrow P\ge1\)
\(\LeftrightarrowĐpcm.\)
Dấu " = " xảy ra khi \(a=b=c=1\)
Chúc bạn học tốt
có a3 kìa sao ko thay vào thành aa+b+c r` giải thử nhỉ :D
Có: a2+b2+c2[tex]\geq[/tex]\(\dfrac{\left(a+b+c\right)^2}{3}\)
=>a2+b2+c2[tex]\geq[/tex]3;abc[tex]\leq[/tex]1(cô si 3 số)
[tex]P=\frac{a^{4}}{ab(2c+a)}+\frac{b^{4}}{bc(2a+b)}+\frac{c^{4}}{ac(2b+c)}[/tex]
=>P[tex]\geq[/tex][tex]\frac{(a^{2}+b^{2}+c^{2})^{2}}{6abc+abc(a+b+c)}[/tex]
P[tex]\geq[/tex][tex]\frac{3^{2}}{9abc}[/tex]
=[tex]\frac{1}{abc}[/tex]=1
cho a+b+c=3
cmr \(\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}\ge1\)
bài này hôm nọ bọn mình thi khảo sát nè :)
Bài 1: CMR:
\(a,\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(b,\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\) với a+b+c=3
Bài 2: \(a,b,c\in N,a+b+c=2021\)
Tìm GTNN \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Bài 1:
a) Áp dụng bđt Cô - si:
\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)
Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
=> đpcm
Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt
Bài 2:
\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)
\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)
Áp dụng BĐT Svacxo, ta có
\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)
Dấu"=" ⇔ ...
Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v
Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)
\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)
Dấu `"="` xảy ra:
\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)
\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)
Cho a,b,c là các số thực k âm thỏa mãn a+b+c=3.CMR
a/ \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)
b/ \(\dfrac{a^2}{a+2b^3}+\dfrac{b^2}{b+2c^3}+\dfrac{c^2}{c+2a^3}\ge1\)
a) BĐT cần cm tương đương ;
\(a-\dfrac{ab^2}{1+b^2}+b-\dfrac{bc^2}{1+c^2}+a-\dfrac{a^2c}{1+a^2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow3-\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\right)\le\dfrac{3}{2}\)
Áp dụng BĐT Cauchy
\(\Rightarrow\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
tương tự rồi cộng vế theo vế các BĐT lại
\(\Leftrightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{ab+bc+ac}{2}\)
mặt khác \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{ab^2}{1+b^2}+\dfrac{bc^2}{1+c^2}+\dfrac{ac^2}{1+c^2}\le\dfrac{3}{2}\)
ĐPCM