rút gọn đa thức:(x+2)^3-(x-1)(x^2+x+1)-4x
Bài 1 (2,0 điểm).
1) Rút gọn biểu thức:
A=(x−2)2+6x+5
2) Thực hiện phép tính
B =(15x2y3 -10x3y2+5x2y2) : (5x2y2).
3) Tim đa thức thương và đa thức dư khi chia đa thức f(x) cho g(x) bằng cách đặt tính với f(x)=x+4x²-5x+3; g(x)=x -3.
Bài 1:
1.
$A=(x-2)^2+6x+5=x^2-4x+4+6x+5=x^2+2x+9$
2.
$B=\frac{15x^2y^3}{5x^2y^2}-\frac{10x^3y^2}{5x^2y^2}+\frac{5x^2y^2}{5x^2y^2}$
$=3y-2x+1$
Bài 3:
$f(x)=x+4x^2-5x+3=4x^2-4x+3=4x(x-3)+8(x-3)+27$
$=(x-3)(4x+8)+27=g(x)(4x+8)+27$
Vậy $f(x):g(x)$ có thương là $4x+8$ và dư là $27$
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
Cho hai đa thức P(x)= 2x^3-2x+x^2+3x+2
Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1
a) Rút gọn P(x),Q(x)
b)Tính P(x)+Q(x)
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
cho 2 đa thức: p(x) = 2x^3 - 2x + x^2 - x^3 + 3x + 2 và Q(x) = 4x^3 - 5x^2 + 3x - 4x - 3x^3 + 4x^2 + 1
a) rút gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b) tính p(x) + Q(x) ; p(x) - Q(x)
c) chứng tỏ x=o không phải là nghiệm của 2 đa thức p(x) và Q(x)
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
Q(x) \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)
b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\); \(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Câu 1 Giá trị của biểu thức x^3-3x^2+3x-1 tại x=11 là
A.1001 B.1002 C.1000 D.999
Câu 2 Phân tích đa thức x^3-4x ta được?
Câu 3 Kết quả phép tính chia đa thức A=2x^2+3x-2 cho đa thức B=2x-1
Câu 4 Phân thức 3x-6/x^2-4 được rút gọn thành ?
Câu 1: C
Câu 2: =x(x-2)*(x+2)
rút gọn và tính giá trị biểu thức :B=(x+2)^2+(x-2)^2-2(x+2)(x-2)với x=-4
phân tích đa thức thành nhân tử:4x^2-4x+1
tìm giá trị lớn nhất của A=3/2x^2+2x+3
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
1)Phân tích đa thức thành nhân tử:
a)6x^3-24x^2y+24xy^2
b)x^2-axy-bxy+aby^2
2)Tìm x,biết: 4x^2-(x+1)^2=0
3) Rút gọn các biểu thức sau:
a)(x-3).(x^2+3x+9)-x.(x-1).(x+1)+2.(x+10)
b)x/x-2y+x/x+2y+4xy/4y^2-x^2
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
1.phân tích đa thứ thành nhân tử : y.(y+1)-5y-5
2. tìm x , biết : 4x^3=x
3. rút gọn biểu thức M = (x+3)^2-(4x+1)-x(2x+1)
giúp iêm với ạ :vv
1. y(y+1)-5y-5 2. 4x3=x
=y(y+1)-(5y+5) <=>4x3-x=0
=y(y+1)-5(y+1) <=>x(4x2-1)=0
=(y+1)(y-5) <=>x(4x2-1)=0
<=>\(\orbr{\begin{cases}x=0\\4x^2-1=0\end{cases}}\)=\(\orbr{\begin{cases}x=0\\4x^2=1\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x=+_-\frac{1}{2}\end{cases}}\)
3. M= (x+3)2 -(4x+1)-x(2x+1)
M= (x2+6x+9)-4x-1-2x2-x
M=x2+6x+9-4x-1-2x2-x
M= -x2+x+8
phân tích đa thức thành nhân tử:
1)x-5(x>0)
2)3+4x(x<0)
rút gọn biểu thức
1)x-(5 căn x)+6/(căn x)-3(x>=0,x><9)
2)6-2x-(căn của 9-6x+x^2) (x<3)
1. Phân tích đa thức thành nhân tử
(a - b) (5x + 3) + 2(a - b)
2. Thực hiện phép tính
a) 3x2 (x - 1)
b) (2x + 3)2 - 4 (x - 3) (x + 3)
3. Rút gọn biểu thức
B= \(\dfrac{2X^3-4X^2+2X}{3X^2-3X}\)