Tìm x,y
a. 5x=4y và x.y=6
5x+4y=x.y =4y chia x. Tìm x và y
mình đang gấp
Bài 5. Tìm x, y∈ ℤ, biết: a) (x – 3).(y + 4) = –7 b) (x – 1).(xy + 1) = 2 c) 5x + xy – 4y = 9 d) x.y = 6 và x + y =5
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)
tìm x,y biết :
a)2x=5y va 3x-4y=34
b)2/x=3y và x^2+y^2=208
c)5x=2y và x.y=90
Bài 3: Tìm x, y €Z sao cho:
a. |x + 25| + |-y + 5| = 0
b. |x - 1| + |x – y + 5|≤ 0
c. |6 – 2x| + |x - 13| = 0
d. |x| + |y + 1| = 0
e. |x| + |y| = 2
f. |x| + |y| = 1
g. x.y = - 28
h. (2x - 1).(4y + 2) = - 42
i. x + xy + y = 9
j. xy – 2x – 3y = 5
k. (5x + 1).(y - 1) = 4
l. xy – 5x + y = 7
giúp mình với chiều mình học rồi
a) |x + 25| + |-y + 5| =0
=> |x + 25| = 0 hoặc |-y + 5| = 0
Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy
Tìm các sô nguyên x và y
a, x.y = -7
b, x.( y-1) = -23
c, xy + 3x - 7y = 21
a: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
giúp mình 2 bài này
Bài 4. Tìm 𝑥 ∈ 𝑍 sao cho: a) 36 ⋮ x và – 3 < x < 30 b) x ⋮ 4 và −16 ≤ 𝑥 < 20 c) x + 3 là bội của x – 1 d) x + 2 là ước của 2x – 1. Bài 5. Tìm x, y∈ ℤ, biết: a) (x – 3).(y + 4) = –7 b) (x – 1).(xy + 1) = 2 c) 5x + xy – 4y = 9 d) x.y = 6 và x + y =5
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: (x,y)∈{(−9;1);(−1;9);(−3;3)}(x,y)∈{(−9;1);(−1;9);(−3;3)}
b: (x,y)∈{(1;7);(−7;−1)}(x,y)∈{(1;7);(−7;−1)}
c: (x,y)∈{(11;−1);(−11;1)}
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
4) \(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}\) và -y+x=1
6) \(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}\)và x+y+z=6
7) 5x=4y và x.y=20
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)