Chứng minh :\(n^6+n^4-2n^2⋮72\left(\forall n\inℤ\right)\)
Ai đúng và nhanh 3 tick nha :3
Bài 1 :
Chứng minh rằng :
a) \(25^{n+1}-25^n⋮100\forall n\inℕ^∗\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\forall n\inℤ\)
c) \(n^3-n⋮6\forall n\inℤ\)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
a) \(25^{n+1}-25^n=25^n.\left(25-1\right)\)
\(=25^n.24=25^n.4.6\)
\(=\left(25^n.4\right).6⋮100\) ( do \(25^n.4⋮100\forall n\inℕ^∗\) )
b) \(n^2.\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n-1\right).\left(n^2-2n\right)\)
\(=\left(n-1\right).n.\left(n-2\right)\)
Ba số trên là ba số liên tiếp
\(\Rightarrow\hept{\begin{cases}\left(n-1\right).n.\left(n-2\right)⋮2\\\left(n-1\right).n.\left(n-2\right)⋮3\end{cases}}\)
\(\Rightarrow\left(n-1\right).n.\left(n-2\right)⋮6\)
hay : \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right)\)
Đến đây tương tự câu b) thì ta có đpcm.
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
Chứng minh rằng: \(n^3+m^3⋮6\Leftrightarrow n+m⋮6\left(\forall m,n\inℤ\right)\)
Từ đó chứng minh công thức tổng quát:
\(x^3_1+x^3_2+x^3_3+......+x^3_n⋮6\Leftrightarrow x_1+x_2+x_3+......+x_n⋮6\left(x_i\inℤ,i=1;2;3;...;n\right)\)
Chứng minh các mệnh đề sau:
\(a,1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) \(\forall n\in N\) *
\(b,1.2+2.3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\) \(\forall n\in N\) *
a) Chứng minh \(n^6+n^4-2n^2⋮72\left(n\in Z\right)\)
b) \(3^{2n}-9⋮72\left(n\in N\right)\)
Chứng minh n^6+n^4-2n^2 chia hết cho 72?
Chứng minh rằng : \(\left(n^6+n^4-2n^2\right)⋮72\)
Tìm x
a, (3x -5). (7- 5x) - (5x+ 2). (2- 3x)= 4
b, (x+ 2). (x2- 2x+ 4)- (x3+ 3). x =14
Chứng minh rằng
a, \(\left(2n-3\right).n-2n.\left(n+2\right)⋮7\forall n\inℤ\)
b, \(n.\left(2n-3\right)-2n.\left(n+1\right)⋮5\forall n\inℤ\)
a) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\frac{43}{42}\)
\(\Rightarrow x=\frac{43}{42}\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14-14\)
\(\Leftrightarrow-x^4+x^3-3x-6=0\)
=> x k có gt thỏa mãn
Chứng minh rằng \(\forall\) STN n ta có:
a) \(\left(7^n+1\right).\left(7^n+2\right)⋮3\)
b) \(n^2+n+6⋮̸4\)
câu b là n^2 + n + 6 không chia hết cho 4
Chứng minh \(\left(n^4+2n^3-13n^2-14n+24\right)\) \(⋮6\)với \(n\inℤ\)
\(n^4+2n^3-13n^2-14n+24\)
\(=\left(n^4+2n^3-n^2-2n\right)-12n^2-12n+24\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-12n^2-12n+24⋮6\)