Chứng minh biểu thức sau luôn > 0 với mọi x:
a) x^4 + x^2 + 2.
b) x^2 + xy + y^2 + 1
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
Chứng minh các biểu thức sau đây luôn luôn dương với mọi x , y
A=(x - 3)(x -5) + 2
B = x2 - 5x + 7
C = x2 - xy + y2
A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0
B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0
C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0
A=(x-3)(x-5)+2
=x2-8x+15+2
=x2-8x+16+1
=(x-4)2+1
vì (x-4)2 lớn hơn hoặc = 0 nên (x-4)2+1 dương
Chứng minh
a)Biểu thức B=x2 -xy+y2 luôn luôn dương với mọi x,y không đồng thời bằng 0
\(B=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\)
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
2; Chứng minh biểu thức: n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ai biết giúp mình với nha!!!!!!!!!!!!!!
cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n
-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
tương tự a
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
Chứng minh rằng:
a/Biểu thức:A=x2+x+1 luôn dương với mọi giá trị của x
b/Biểu thức:B= x2-x+1 luôn dương với mọi giá trị của x
c/x2+xy+y2+1>0 với mọi x;y
d/x2+4y2+z2-2x-6y+8z+15>0 với mọi x;y;z
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
bài 1:tính GTNN của các biểu thức sau:
a,A=x^2-4x+6
b,B=y^2-y+1
c,C=x^2-4x+y^2-y+5
bài 2: tính GTLN của các biểu thức sau
a,A=-x^2+4x+2
b,B=x-x^2+2
bài 3:chứng tỏ
a,x^2-6x+10>0 với mọi x
b,4y-y^2-5 với mọi y
bài 4:cho biết x+y=15 và xy=-100. Tính giá trị của biểu thức B=x^2+y^2
bài 5:chứng minh đẳng thức (x+y)^2-(x-y)^2=4xy
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
Trả lời:
Bài 1:
a, \(A=x^2-4x+6=x^2-2.x.2+4+2=\left(x-2\right)^2+2\)\(\ge2\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTNN của A = 2 khi x = 2
b, \(B=y^2-y+1=\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall y\)
Dấu "=" xảy ra khi \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\)
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=x^2-4x+y^2-y+5=\left(x^2-4x\right)+\left(y^2-y\right)+4+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall x;y\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2 và y - 1/2 = 0 <=> y = 1/2
Vậy GTNN của C = 3/4 khi x = 2; y = 1/2
Bài 2:
a, \(A=-x^2+4x+2=-\left(x^2-4x-2\right)=-\left(x^2-2.x.2+4-6\right)=-\left[\left(x-2\right)^2-6\right]\)
\(=-\left(x-2\right)^2+6\le6\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của A = 6 khi x = 2
b, \(B=x-x^2+2=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\le-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của B = - 9/4 khi x = 1/2
1/ Chứng minh đa thức sau luôn dương với mọi x:
x2 - x + 1
2/ Chứng minh các đa thức sau luôn âm với mọi x:
a) (x - 3)(1 - x) - 2
b) (x + 4)(2 - x) - 10
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
b
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)