cho a^5+b^5+c^5 chia hết cho 30 C/m a+b+c chia hết cho 30
Cho a,b,c là số nguyên. CMR: Nếu a+b+c chia hết cho 30 thì a^5+b^5+c^5 chia hết cho 30
Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Đó là câu trả lời đúng.hihi :)
Ta xét (a^5 -a) + (b^5 -b) + (c^5 -c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Ta có :a^5-a=a(a^4-1)=a(a^2-1)(a^2+1)=a(a-1)(a+1)(a^2-4+5)
=a(a-1)(a+1)(a^-4)+5a(a+1)(a-1)
=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1)
Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số hạng liên tiếp
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Lại có (a-2)(a-1) là tích của hai số liên tiếp =>(a-2)(a-1) chia hết cho 2 => (a-2)(a-1)a(a+1)(a+2) chia hết
Mà (2;5)=1 => (a-2)(a-1)a(a+1)(a+2)+ 5a(a+1)(a-1) chia hết cho 30
Hay a^5-a chia hết cho 30 (1)
CMTT ta được: b^5-b chia hết cho 30 (2)
c^5-c chia hết cho30 (3)
Cộng (1),(2),(3) ta được a^5+b^5+c^5-(a+b+c) chia hết cho 30
Mà (a+b+c) =0
Luôn chia hết cho 30
=>a^5+b^5+c^5 chia hết cho 30
Vậy a^5+b^5+c^5 chia hết cho 30
Cho a+b+c chia hết cho 30 (a,b,c thuộc Z) . CMR: a5+b5+c5 chia hết cho 30
Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)
Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)
Hay \(a^5-a\)\(⋮\)\(30\)
Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30
\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)
Mà \(a+b+c\)\(⋮\)\(30\)
\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)
Cho các số nguyên a,b,c Chứng minh rằng nếu tổng a+b+c chia hết cho 30 thì a5+b5+c5 chia hết cho 30
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
Cho a,b,c thuộc z.Thỏa mãn a+b+c=0
c/m a^5+b^5+c^5 chia hết cho 30
1. Cho P là số nguyên tố lớn hơn 3.Chứng minh P^2 - 1 chi hết cho 24
2. Chứng minh (a+b+c) chia hết cho 30 thì (a^5+b^5+c^5) chia hết cho 30
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)
Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)
b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.
Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)
\(a^5\equiv a\left(mod5\right)\)
Theo tính chất của phép đồng dư, ta có:
\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)
Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)
Các bạn giúp mình nha!!
Bài 2: Chia các số 55 và 77 cho cùng 1 số, ta đc số lần lượt là 2 và 9. Tìm số chia ấy.
Bài 3:
(5+5^2+5^3+5^4+....+5^29+5^30) chia hết cho 6
(a+a^2+a^3+a^4+.....+a^29+a^30) chia hết cho a+1(a thuộc N)
(3+3^2+3^3+3^4+....+3^29+3^30) chia hết cho 4
Câu 1: nếu M=12a+14b thì :
A: M chia hết cho 4
B: M chia hết cho 2
C: M chia hết cho 12
D: M chia hết cho 14
Câu 2 : Cho 2 =2^3 x 3 , b=3^2 x 5^2 , c=2 x 5 khi đó ƯCLN (a,b,c) là :
A :2^3 x 3 x5
B :1
C :2^3 x 3^2 x 5^2
D :30
Cho A=5+52+53+...+530, chứng minh: a)A chia hết cho 5 b)A chia hết cho 6 c) A chia hết cho 31