chứng minh:
a. \(4x^2+12x+10\ge1\)
b. \(25x^2+5x+1\ge\dfrac{3}{4}\)
chứng minh:
a) \(4x^2 +12x+10\ge1\)
b) \(25x^2+5x+1\ge\dfrac{3}{4}\)
(làm theo hàng đẳng thức thứ 1 hoặc 2 hoặc 3 nhé các cậu bởi vì mình mới học đến đó thôi. tks các cậu nhiều)
\(4x^2+12x+10=\left(4x^2+12x+9\right)+1=\left(2x+3\right)^2+1\ge1\)
\(25x^2+5x+1=\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(5x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:
a+b+c\(\ge\)ab+bc+ca
\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)
\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
giải phương trình
\(\dfrac{2x-1}{x^2-4x+4} + \dfrac{5x}{x-2} - \dfrac{25x}{5x-10} = 0\)
\(\dfrac{2x-1}{\left(x-2\right)^2}+\dfrac{5x}{x-2}-\dfrac{25x}{5\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{\left(2x-1\right).5}{\left(x-2\right)^2.5}+\dfrac{5x\left(x-2\right).5}{\left(x-2\right).\left(x-2\right).5}-\dfrac{25x\left(x-2\right)}{5\left(x-2\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{10x-5+25x^2-50x-25x^2+50x}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{10x-5}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{5\left(2x-1\right)}{5\left(x-2\right)^2}=0\)
\(\Leftrightarrow\dfrac{2x-1}{x-2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
thực hiện phép tính
a)\(\dfrac{1}{x-5x^2}\)-\(\dfrac{25x-15}{25x^2-1}\)
b)(-\(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}-\dfrac{-1}{4x+16}\))\(\div\dfrac{1}{4x}\)
`a)1/[x-5x^2]-[25x-15]/[25x^2-1]`
`=[-(5x+1)-x(25x-15)]/[x(5x-1)(5x+1)]`
`=[-5x-1-25x^2+15x]/[x(5x-1)(5x+1)]`
`=[-25x^2+10x-1]/[x(5x-1)(5x+1)]`
`=[-(5x-1)^2]/[x(5x-1)(5x+1)]`
`=[1-5x]/[x(5x+1)]`
________________________________________________-
`b)(-1/[x^2-4x]+2/[16-x^2]-[-1]/[4x+16]):1/[4x]`
`=[-4(x+4)-8x+x(x-4)]/[4x(x-4)(x+4)].4x`
`=[-4x-16-8x+x^2-4x]/[(x-4)(x+4)]`
`=[x^2-16x-16]/[x^2-16]`
A.5x^2y^3-25x^3y^4+10x^3y^3
B.12x^2y-18xy^2-30y^2
C.5(x-y)-y(x-y)
D.y(x-z)+7(z-x)
E.27x^2(y-1)-9x^3(1-y)
F.36-12x+x^2
G.x^2+2xy+y^2-xz-yz
H.x^4+64
I.27x^2(y-1)-9x^3(1-y)
K.36-12x+x^2
M.-4x^2+4x-1
N.x^2+5x+6
P.x^2-x-6
Q.x^4-5x^2+4
5. a) \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)};\) b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
a, \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)
\(=\dfrac{4x+13}{5x\left(x-7\right)}+\dfrac{x-48}{5x\left(x-7\right)}\)
\(=\dfrac{4x+13+x-48}{5x\left(x-7\right)}\)
\(=\dfrac{5x-35}{5x\left(x-7\right)}\)
\(=\dfrac{5\left(x-7\right)}{5x\left(x-7\right)}=\dfrac{1}{x}\)
b, \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
\(=\dfrac{1}{x\left(1-5x\right)}+\dfrac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)
\(=\dfrac{1+5x}{x\left(x-5x\right)\left(1+5x\right)}+\dfrac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)
\(=\dfrac{1+5x+25x^2-15x}{x\left(1-5x\right)\left(1+5x\right)}\)\(=\dfrac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}=\dfrac{\left(5x-1\right)^2}{x.\left(1-5x\right)\left(1+5x\right)}\)
\(=\dfrac{\left(5x-1\right)^2}{-x\left(5x-1\right)\left(1+5x\right)}\) \(=\dfrac{-\left(5x-1\right)}{x\left(1+5x\right)}\)
Cho hai số a,b thỏa mãn \(ab\ge1\)
Chứng minh rằng:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Dùng phương pháp biến đổi tương đương nhé!!!
Ta có : \(\dfrac{1}{1+a^2}\) + \(\dfrac{1}{1+b^2}\) \(\ge\) \(\dfrac{2}{1+ab}\)
<=>( \(\dfrac{1}{1+a^2}\) - \(\dfrac{1}{1+ab}\) ) + ( \(\dfrac{1}{1+b^2}\) - \(\dfrac{1}{1+ab}\) ) \(\ge\) 0
<=> \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\) \(\ge\) 0
<=> \(\left(b-a\right)\left(a+ab^2-b-a^2b\right)\) \(\ge\) 0
<=> \(\left(b-a\right)\left[ab\left(b-a\right)-\left(b-a\right)\right]\) \(\ge\) 0
<=> \(\left(b-a\right)\left(b-a\right)\left(ab-1\right)\) \(\ge\) 0
<=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0 (1)
Mà \(\left\{{}\begin{matrix}\left(b-a\right)^2\ge0\\ab-1\ge0\end{matrix}\right.\) ( vì ab \(\ge\)1)
=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0
=> (1) luôn đúng
Vậy đpcm ....
Ta có: \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
BĐT cuối cùng đúng vì \(a.b\ge1\Rightarrowđpcm\)
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
1, Rút gọn các phân thức:
a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)
b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)
c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)
d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)
e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)
2, Rút gọn rồi tính giá trị các biểu thức:
a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a=4, b=-5, c=6
b, \(\dfrac{16x^2-40xy}{8x^2-24xy}với\dfrac{x}{y}=\dfrac{10}{3}\)