Những câu hỏi liên quan
NN
Xem chi tiết
DX
13 tháng 8 2018 lúc 12:35

\(4x^2+12x+10=\left(4x^2+12x+9\right)+1=\left(2x+3\right)^2+1\ge1\)

\(25x^2+5x+1=\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(5x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Bình luận (0)
DH
Xem chi tiết
NL
4 tháng 10 2021 lúc 12:49

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

Bình luận (0)
TD
Xem chi tiết
VT
6 tháng 8 2017 lúc 11:10

\(\dfrac{2x-1}{\left(x-2\right)^2}+\dfrac{5x}{x-2}-\dfrac{25x}{5\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{\left(2x-1\right).5}{\left(x-2\right)^2.5}+\dfrac{5x\left(x-2\right).5}{\left(x-2\right).\left(x-2\right).5}-\dfrac{25x\left(x-2\right)}{5\left(x-2\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{10x-5+25x^2-50x-25x^2+50x}{5\left(x-2\right)^2}=0\)

\(\Leftrightarrow\dfrac{10x-5}{5\left(x-2\right)^2}=0\)

\(\Leftrightarrow\dfrac{5\left(2x-1\right)}{5\left(x-2\right)^2}=0\)

\(\Leftrightarrow\dfrac{2x-1}{x-2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (2)
H24
Xem chi tiết
H24
16 tháng 12 2022 lúc 20:16

`a)1/[x-5x^2]-[25x-15]/[25x^2-1]`

`=[-(5x+1)-x(25x-15)]/[x(5x-1)(5x+1)]`

`=[-5x-1-25x^2+15x]/[x(5x-1)(5x+1)]`

`=[-25x^2+10x-1]/[x(5x-1)(5x+1)]`

`=[-(5x-1)^2]/[x(5x-1)(5x+1)]`

`=[1-5x]/[x(5x+1)]`

________________________________________________-

`b)(-1/[x^2-4x]+2/[16-x^2]-[-1]/[4x+16]):1/[4x]`

`=[-4(x+4)-8x+x(x-4)]/[4x(x-4)(x+4)].4x`

`=[-4x-16-8x+x^2-4x]/[(x-4)(x+4)]`

`=[x^2-16x-16]/[x^2-16]`

Bình luận (0)
DS
Xem chi tiết
AP
Xem chi tiết
TT
30 tháng 11 2018 lúc 22:19

a, \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)

\(=\dfrac{4x+13}{5x\left(x-7\right)}+\dfrac{x-48}{5x\left(x-7\right)}\)

\(=\dfrac{4x+13+x-48}{5x\left(x-7\right)}\)

\(=\dfrac{5x-35}{5x\left(x-7\right)}\)

\(=\dfrac{5\left(x-7\right)}{5x\left(x-7\right)}=\dfrac{1}{x}\)

b, \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)

\(=\dfrac{1}{x\left(1-5x\right)}+\dfrac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x}{x\left(x-5x\right)\left(1+5x\right)}+\dfrac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{1+5x+25x^2-15x}{x\left(1-5x\right)\left(1+5x\right)}\)\(=\dfrac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}=\dfrac{\left(5x-1\right)^2}{x.\left(1-5x\right)\left(1+5x\right)}\)

\(=\dfrac{\left(5x-1\right)^2}{-x\left(5x-1\right)\left(1+5x\right)}\) \(=\dfrac{-\left(5x-1\right)}{x\left(1+5x\right)}\)

Bình luận (0)
MD
Xem chi tiết
MD
15 tháng 4 2017 lúc 20:54

Dùng phương pháp biến đổi tương đương nhé!!!

Ta có : \(\dfrac{1}{1+a^2}\) + \(\dfrac{1}{1+b^2}\) \(\ge\) \(\dfrac{2}{1+ab}\)

<=>( \(\dfrac{1}{1+a^2}\) - \(\dfrac{1}{1+ab}\) ) + ( \(\dfrac{1}{1+b^2}\) - \(\dfrac{1}{1+ab}\) ) \(\ge\) 0

<=> \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left(a+ab^2-b-a^2b\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left[ab\left(b-a\right)-\left(b-a\right)\right]\) \(\ge\) 0

<=> \(\left(b-a\right)\left(b-a\right)\left(ab-1\right)\) \(\ge\) 0

<=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0 (1)

\(\left\{{}\begin{matrix}\left(b-a\right)^2\ge0\\ab-1\ge0\end{matrix}\right.\) ( vì ab \(\ge\)1)

=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0

=> (1) luôn đúng

Vậy đpcm ....

Bình luận (1)
H24
17 tháng 4 2017 lúc 20:29

Ta có: \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)

\(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

BĐT cuối cùng đúng vì \(a.b\ge1\Rightarrowđpcm\)

Bình luận (0)
HN
Xem chi tiết
NL
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

Bình luận (0)
AN
Xem chi tiết
TH
27 tháng 7 2018 lúc 8:30

Những hằng đẳng thức đáng nhớ (Tiếp 1)

Bình luận (0)
TH
27 tháng 7 2018 lúc 8:29

Những hằng đẳng thức đáng nhớ (Tiếp 1)

Bình luận (0)