B = x(3xy-4)-y(7x+5)+ y(xy+5y-3x)-7 C/m:B âm với mọi x,y
Tìm bậc của đa thức sau:
A= 1/3xy(x-y)+3(xy^3+xy^2)
B=5y(x^2-xy)-7x^2(y+xy)
C= 9x^5+3xy-3/2xy^2-2(3x^5+xy)
Thank các bn
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm \(x;y\in Z^+\) biết :
\(a,2x^2-xy+7x+2y-y^2-7=0\)
\(b,x^2+2y^2+3xy+3x+5y-14=0\)
P/s: Hướng dẫn em làm chi tiết dạng này nữa với ạ
Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Chứng minh rằng giá trị của A luôn không âm với mọi x,y khác 0
\(A=\left(7x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực.
Câu 5:
a) Chứng minh rằng: với mọi x; y ba đơn thức sau không thể đều nhận giá trị âm: -5x3 y2; -8x5y3; 6y7
b) Tìm giá tri nhỏ nhất của biểu thức: A= |7x - 5y| + |2z - 3x| + |xy + yz + zx -2000|
Tìm x, y thuộc Z:
a) x^2+xy+y^2=2x+y
b) x^2+xy+y^2=x+y
c) x^2-3xy+3y^2=3y
d) x^2-2xy+5y^2=y+1
e) 3x-xy+y^2=3
f) 3x+317=5x^2
g) x^2=4^y+5
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
cho đa thức A =\(x^2-5xy+5y^2-3x+18y.\)đa thức B =\(-x^2+3xy-y^2-x-7\) và C = A-B. Tính C với x-y = 4
\(C=A-B=x^2-5xy+5y^2-3x+18y-\left(-x^2+3xy-y^2-x-7\right)\\ =x^2-5xy+5y^2-3x+18y+x^2-3xy+y^2+x+7\\ =\left(x^2+x^2\right)+\left(-5xy-3xy\right)+\left(5y^2+y^2\right)+\left(-3x+x\right)+18y+7\)
\(=2x^2-8xy+6y^2-2x+18y+7\)
Bạn xem lại đề nhé, mình nghĩ không tính được giá trị C khi x-y=4 nhé.