Những câu hỏi liên quan
HC
Xem chi tiết
PN
Xem chi tiết
KB
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
NT
4 tháng 3 2022 lúc 20:05

Bài 1: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó:ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC
BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

Bình luận (1)
H24
4 tháng 3 2022 lúc 20:11

TK
Bài 1: a: Xét ΔABE và ΔACD có AB=AC ˆ B A E chung AE=AD Do đó:ΔABE=ΔACD Suy ra: BE=CD b: Xét ΔDBC và ΔECB có DB=EC BC chung DC=EB Do đó: ΔDBC=ΔECB Suy ra: ˆ K D B = ˆ K E C Xét ΔKDB và ΔKEC có ˆ K D B = ˆ K E C BD=CE ˆ K B D = ˆ K C E Do đó: ΔKDB=ΔKEC

Bình luận (0)
HV
Xem chi tiết
NT
4 tháng 2 2022 lúc 20:24

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔEDC và ΔDEB có 

DE chung

\(\widehat{EDC}=\widehat{DEB}\)

DC=EB

Do đó: ΔEDC=ΔDEB

Suy ra: \(\widehat{GED}=\widehat{GDE}\)

hay ΔGED cân tại G

Bình luận (0)
TT
Xem chi tiết
XO
23 tháng 6 2021 lúc 17:35

Tam giác ABC vuông cân tại A 

=> AB = AC = 2 

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

<=> 22 + 22 = BC2

<=> BC2 = 8

<=> BC = \(\sqrt{8}\)cm

Bình luận (0)
 Khách vãng lai đã xóa
XO
23 tháng 6 2021 lúc 17:37

6) Tam giác ABC vuông cân tại A 

=> AB = AC

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

=> 2.AB2 = BC2 (AB = AC)

=> 2.AB2 = 22

=> AB2 = 2

=> AB = AC = \(\sqrt{2}\)(cm) 

Bình luận (0)
 Khách vãng lai đã xóa
QA
23 tháng 6 2021 lúc 19:14

Trả lời:

A B C

Bài 5: 

Xét tam giác ABC vuông cân tại A, có:

BC2 = AB2 + AC2 ( định lí Py-ta-go )

=> BC2 = 22 + 22 ( vì AB = AC do tam giác ABC cân tại A )

=> BC2 = 8

=> BC = \(\sqrt{8}\left(cm\right)\)

Vậy BC = \(\sqrt{8}\left(cm\right)\)

Bài 6: 

Xét tam giác ABC vuông cân tại A, có:

AB2 + AC2 = BC2 ( định lí Py-ta-go )

=> 2.AB2 = BC2 ( vì AB = AC do tam giác ABC cân tại A )

=> 2.AB2 = 22

=> AB2 = 22 : 2

=> AB2 = 2

=> AB = \(\sqrt{2}\left(cm\right)\)

=> AC = \(\sqrt{2}\left(cm\right)\)

Vậy AB = AC = \(\sqrt{2}\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 13:49

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 13:25

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bình luận (0)
NT
25 tháng 8 2021 lúc 13:27

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 8 2021 lúc 12:54

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Bình luận (0)
NT
25 tháng 8 2021 lúc 13:25

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bình luận (0)