So sánh:
C=1+2+2^2+2^3+2^4+2^5và D=2^6-1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. So sánh:C=3210 với D=2310
2. Hiệu của 2 số nguyên tố có thể bằng 2013 được không? Vì sao?
3.ChoA=1-5+9-13+17-21+...Biết A=2013. Hỏi A có bao nhiêu số hạng?Giá trị của số hạng cuối cùng?
4.Tìm x, biết:
(1/2+1/3+...+1/2012+1/2013).x =2012/1+2011/2+2010/3+...+1/2012
giải giúp mình với, mình đang cần gấp!!!!!!!!
2)không.Vì hiệu của 2 số là 1 số lẻ nên số trừ phải là số lẻ hoặc chẵn nhưng trong trường hợp này số trừ lẻ thì số bị trừ chẵn mà SBT là SNT nên SBT=2( vô lý vì SBT luôn >2014)
còn nếu số trừ chẵn thì số trừ =2 SBT=2015( là hợp số)
1)C=3^210
C=3^200*3^10
D=2^310=
D=2^300*2^10
Mà 3^200=(3^2)^100=9^100
2^300=(2^3)^100=8^100
nên 3^200>2^300
Mà 3^10>2^10
Nên 3^200*3^10>2^300*2^10
C>D
3)Gọi số số hạng là n
ta có
A=1-5+9-13+17-21+25-...
A=1+4+4+4...=2013(có n/2-1 số 4)
A=1+4*(n/2-1)=2013
A=1+2*n-4=2013
1+2*n=2017
2*n=2016
n=1008
số cuối là 4029(tui làm lụi đó hông bít có đúng hk)
a.X--3 phần 4=6×3 phần 8
b.7 phần 8:x=3- 1 phần 2
c.x+1 phần 2 ×1 phần 3=3 phần 4
d.1-(5và bốn phần chín+x-7 và7 phần 18):15 và 8 phần 4 =0
Bài 1: Quy đồng mẫu số các phân số sau:
a) 2/5và 3/4 ; b) 2/7 và 5/14 ; c) 4/9 và 5/27 d) 2/3 , 4/5 và 5/6
Bài 2 Viết theo thứ tự từ bé đến lớn:
a) 1/2 , 2/5 , 3/10 b) 4/7 , 36/72 , 100/250
Bài 3: Người ta trông lạc trên một thửa ruộng hình chữ nhật có chiều dài 83m, chiều rộng bằng chiều dài.
a. Tính diện tích thửa ruộng đó.
b. Biết trung bình 48m2 thu hoạch được 12 kg lạc. Hỏi trên cả thửa ruộng đó người ta thu hoạch được bao nhiêu tạ lạc.
Bài 4: Quãng đường AB dài 99 km. Một ô tô đi với vận tốc 45 km/giờ và đến B lúc 11 giờ 12 phút. Hỏi ô tô đi từ A lúc mấy giờ, biết rằng dọc đường ô tô nghỉ 15 phút.
SOS mn ơi
tách ra bn hơi dài cho từ cái 1 thôi
Câu1: Rút gọn
\(a,x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\\ b,\sqrt{m^2-6m+9-2m}\left(x>3\right)\\ c,1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\\ d,\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
Câu 2: So sánh
\(a,3và\sqrt{5}\\ \\ \\ b,2\sqrt{2}và3\sqrt{2}\\ \\ \\ c,-4\sqrt{5}và-6\sqrt{6}\\ \\ \\ d,2\sqrt{3}-5và\sqrt{3}-4\\ \\ \\e,A=\sqrt{2006}-\sqrt{2005}và\\ B=\sqrt{2005}-\sqrt{2004}\)
Câu 3: Rút gọn
\(a,\sqrt{16-2\sqrt{55}}\\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{14-6\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ c,\sqrt{36+12\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{29+12\sqrt{5}}\)
Câu4: Tìm đkxđ
\(a,\sqrt{x^2-9}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{x^2-3x+2}\)
\(c,\frac{\sqrt{x+3}}{\sqrt{5-x}}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{\frac{x+3}{5-x}}\)
Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) Đk: \(-3\le x< 5\)
d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:
\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.
Câu 1:
a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)
\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)
+) Với \(x\ge-2\):
\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)
+) Với \(x< -2\):
\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)
b) \(B=\sqrt{m^2-6m+9-2m}\)
\(B=\sqrt{m^2-8m+9}\)
Bạn xem lại đề nhé :)
c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(C=1+\sqrt{x-1}\)
d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
+) Xét \(x\ge8\):
\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
+) Xét \(4< x< 8\):
\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Vậy....
Câu 2:
a) Ta có: \(\sqrt{5}< \sqrt{9}=3\)
b) \(2\sqrt{2}< \left(2+1\right)\sqrt{2}=3\sqrt{2}\)
c) \(-4\sqrt{5}>-4\sqrt{6}>-6\sqrt{6}\)
d) Xét hiệu: \(2\sqrt{3}-5-\sqrt{3}+4=\sqrt{3}-1>\sqrt{1}-1=0\)
Nên \(2\sqrt{3}-5>\sqrt{3}-4\)
e) Tương tự
cho a:b:c:d=2:3:4:5
và a+b+c+d=-42
tính P=ab+cd
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{d}{5}=\dfrac{a+b+c+d}{2+3+4+5}=\dfrac{-42}{14}=-3\)
=>a=-6; b=-9; c=-12; d=-15
P=ab+cd
=54+60=114
X/y=2/3;y/z=4/5và x^2 -y^2 = -320
Từ \(\frac{x}{y}=\frac{2}{3}\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}=\frac{4}{5}\)\(\Rightarrow\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)(1) \(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\frac{y}{12}\right)^2=\left(\frac{z}{15}\right)^2=\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
\(=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Rightarrow x^2=4.64=256\)\(\Rightarrow x=\pm18\)
\(y=4.144=576\)\(\Rightarrow y=\pm24\)
\(z^2=4.225=900\)\(\Rightarrow z=\pm30\)
Từ (1) \(\Rightarrow\)x, y, z có cùng dấu
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn đề bài là: \(\left(-18;-24;-30\right)\); \(\left(18;24;30\right)\)
\(\frac{x}{y}=\frac{2}{3};\frac{y}{z}=\frac{4}{5}\) và \(x^2-y^2=-320\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Leftrightarrow x^2=4.64=256\Leftrightarrow x=16hoacx=-16\)
\(\Leftrightarrow y^2=4.144=576\Leftrightarrow x=24hoacx=-24\)
\(\Leftrightarrow\frac{z}{15}=4\Leftrightarrow z=4.15=60\)
Chúc bạn học tốt
Bài làm :
Ta có :
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{13}\left(1\right)\)\(\frac{y}{z}=\frac{4}{5}\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)Từ (1) và (2)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\frac{y}{12}\right)^2=\left(\frac{z}{15}\right)^2=\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{8}\right)^2=4\Leftrightarrow\frac{x}{8}=\pm2\Leftrightarrow x=\pm16\\\left(\frac{y}{12}\right)^2=4\Leftrightarrow\frac{y}{12}=\pm2\Leftrightarrow y=\pm24\\\left(\frac{z}{15}\right)^2=4\Leftrightarrow\frac{z}{15}=\pm2\Leftrightarrow z=\pm30\end{cases}}\)
Vậy các cặp giá trị (x;y;z) thỏa mãn đề bài là: (16;24;30) ; (-16;-24;-30)
1.So sánh các số hữu tỉ sau bằng cách nhanh nhất:-13/15 và -14/16
2.Hãy viết 3 số hữu tỉ xen giữa 2 số hữu tỉ -3/5và-5/8
\(-\frac{13}{15}+-\frac{2}{15}=-1;-\frac{14}{16}+-\frac{2}{16}\)
Vì \(-\frac{2}{15}< -\frac{2}{16}\Rightarrow\frac{-13}{15}< -\frac{14}{16}\)
2.Gọi 3 p/số đó là x;y;z
\(-\frac{5}{8}< x< y< z< -\frac{3}{5}\)
\(-\frac{100}{160}< x< y< z< -\frac{96}{160}\)
\(\Rightarrow x=-\frac{99}{160};y=-\frac{98}{160}=-\frac{49}{80};z=-\frac{97}{160}\)
1)Tính giá trị biểu thức:
\(C=1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times1\frac{1}{24}\times...\times1\frac{1}{9800}\)
\(E=\frac{11}{1\times3}+\frac{47}{3\times5}+...+\frac{971}{17\times49}\)
2)Tính tổng:
\(A=2+6+12+...+4058210\)
\(B=4+12+24+...+8116420\)
1)So sánh:C với \(4^{100}\div3\)
\(C=1+4+4^2+...+4^{99}\)
So sánh: \(2\sqrt{3}-5và\sqrt{3}-4\)
\(2\sqrt{3}-5=\sqrt{3}-4+\sqrt{3}-1>\sqrt{3}-4\) (Do \(\sqrt{3}>1nên\sqrt{3}-1>0\))