giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
giải giúp mk vs :
a) 6x^2-5x+3=2x-3x(2-x)
b) 25x^2-9=(5x+3)(2x+1)
c) (3x-4)^2-4(x+1)^2=0
d) 3x^2-7x+4=0
e) 2x-5+3x=3x+6
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
1, 16 - 8x = 0
<=>-8x = 16
<=> x = -2
Vậy_
2, 7x + 14 = 0
<=> 7x = -14
<=> x = -2
3, 5 - 2x = 0
<=> - 2x = -5
<=> x =\(\frac{5}{2}\)
Vậy_
4, 3x - 5 = 7
<=> 3x = 7 + 5
<=> 3x = 12
<=> x = 4
Vậy...
5, 8 - 3x = 6
<=> - 3x = 6 - 8
<=> -3x = - 2
<=> x =\(\frac{2}{3}\)
Vậy......
Giải phương trình :
1) √x2+x+2 + 1/x= 13-7x/2
2) x2 + 3x = √1-x + 1/4
3) ( x+3)√48-x2-8x= 28-x/ x+3
4) √-x2-2x +48= 28-x/x+3
5) 3x2 + 2(x-1)√2x2-3x +1= 5x + 2
6) 4x2 +(8x - 4)√x -1 = 3x+2√2x2 +5x-3
7) x3/ √16-x2 + x2 -16 = 0
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
chiu lop 3 ma
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Giải các phương trình sau:
g/ x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
h/ (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
i/ (x + 2)(3 – 4x) = x2 + 4x + 4
k/ x(2x – 7) – 4x + 14 = 0
m/ x2 + 6x – 16 = 0
n/ 2x2 + 5x – 3 = 0
\(m,x^2+6x-16=0\)
\(\Leftrightarrow x^2-2x+8x-16=0\)
\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=2\end{matrix}\right.\)
\(n,2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(k,x\left(2x-7\right)-4x+14=0\)
\(\Leftrightarrow2x^2-4x-7x+14=0\)
\(\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)
giải pt
x^2+4x-3|x+2|+4=0
4x^2+1/x^2+|2x-1/x|-6=0
2x/(3x^2-5x+2)+13x/(3x2+x+2)=6
2(x+1)/3x^2+x+13(x+1)/3x^2+7x+16=6
1: =>(x+2)^2-3|x+2|=0
=>|x+2|(|x+2|-3)=0
=>x+2=0 hoặc x+2=3 hoặc x+2=-3
=>x=-2; x=1; x=-5
Bài 3: Tìm x
a) (2x+3)2−4x2=10
b) (x+1)2−(2+x)(x−2)=0
c) (5x−1)(1+5x)=25x2−7x+15
d) (4−x)2−16=0
e) 3x2−12x=0
g) x2−8x−3x+24=0
e: \(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)