Tìm x (dùng phương pháp đặt ẩn phụ)
\(x^2+2x+5\)\(= {5 \over 2}\)\(\sqrt{x^3+4x^2+5x+6}\)
Tìm x (dùng phương pháp đặt ẩn phụ):
\(x^2+2x+5=\frac{5}{2}\sqrt{x^3+4x^2+5x+6}\)
ĐK: \(x^3+4x^2+5x+6\ge0\)
Ta có: \(x^3+4x^2+5x+6=\left(x+3\right)\left(x^2+x+2\right);x^2+2x+5=\left(x+3\right)+\left(x^2+x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=u\\\sqrt{x^2+x+2}=v\end{cases}}\)
Vậy nên ta có phương trình: \(\)\(u^2+v^2=\frac{5}{2}uv\)
\(\Leftrightarrow2u^2-5uv+2v^2=0\Leftrightarrow\orbr{\begin{cases}u=2v\\u=\frac{1}{2}v\end{cases}}\)
Với u = 2v ta có: \(\sqrt{x+3}=2\sqrt{x^2+x+2}\Leftrightarrow x+3=4x^2+4x+8\)
\(\Leftrightarrow4x^2+3x+5=0\) (Vô nghiệm)
Với \(u=\frac{1}{2}v\) ta có: \(2\sqrt{x+3}=\sqrt{x^2+x+2}\Leftrightarrow4x+12=x^2+x+2\)
\(\Leftrightarrow x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\left(tmđk\right)\)
Vậy phương trình có nghiệm \(x\in\left\{5;-2\right\}\)
phân tick đã thức sau thành nhân tử( sử dung phương pháp đặt ẩn phụ)
4(x+5)(x+6)(x+10)(x+12) - 3x^2
(x^2+3x+1)(x^2+3x+2)-6
3x^6-4x^5+2x^4-8x^3+2x^2-4x+3
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu a nhé!
Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
a,\(x+\sqrt{5+\sqrt{x-1}}=\)6
b,\(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
c,\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
d,\(2x^2-6x-1=\sqrt{4x+5}\)
a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0
ý c) dk tu viet
\(\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)
\(x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}=4\)
\(2x+2\sqrt{x^2-x^2+1}=4\)
\(2x+2=4\)
2x=2
x=1
hộ e vs ak
Giải các pt vô tỉ sau ( bằng phương pháp đặt ẩn phụ đưa về phương trình tích )
a) \(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
b) \(\sqrt{x^2-3x}+2\sqrt{x}-4\sqrt{x-3}-x+8=0\)
c) \(\left(5x^2+4x+3\right)\sqrt{x}=\left(x+3\right)\sqrt{5x^2+4x}\)
d) \(\left(x+2\right)\sqrt{3x+\frac{1}{x}}=3x^2+3\)
e)\(\left(x^2+2x+1\right)3\sqrt{x^2+\frac{3}{x}}=x^3+2x^2+5\)
gpt bằng phương pháp đặt ẩn phụ đưa về pt đẳng cấp:
\(\sqrt{5x^2-14x+9}-\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
dùng phương pháp đặt ẩn phụ để giả pt sau: \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đk : với mọi x
Đặt \(\sqrt{x^2-3x+3}=a\)
pt trở thành : a+\(\sqrt{a^2+3}\)=3
<=> \(\sqrt{a^2+3}\)= 3-a
=> a^2+3 = 9-6a+a^2
<=> a^2+3-(9-6a+a^2)=0
<=> 6a-6=0
<=> 6a=6
<=> a=1
<=> \(\sqrt{x^2-3x+3}\)=1
<=> x^2-3x+3=1
<=> x^2-3x+2=0
<=> (x-1).(x-2) = 0
<=> x=1 hoặc x=2
Thử lại thì đều tm
Vậy .............
Tk mk nha
bài quân thêm đk a>=0 ; và khi bình phương thì 3-a >=0
Giải các phương trình sau bằng phương pháp đặt ẩn phụ :
a) \(\left(x^2-2x\right)^2-2x^2+4x-3=0\)
b) \(3\sqrt{x^2+x+1}-x=x^2+3\)
GPT : \(x\sqrt{x+1}+\left(x+5\right)\sqrt{x+6}=x^2+5x+6\) ( x = 3 )
( Dùng ẩn phụ hoặc liên hợp )
Lời giải:
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)
\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)
\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)
Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.
Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)
Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)
Vậy........
giải phương trình ( đặt ẩn phụ )
1)\(\sqrt{2x+\sqrt{4x^2-1}}\)+\(\sqrt{2x-\sqrt{4x^2-1}}\)=2
2)(x+5)(2-x)=3.\(\sqrt{x^3+3x}\)
3) 4x2 +10x+9=5. \(\sqrt{2x^2+5x+3}\)
4) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{2}}\)=3
5)\(\sqrt{x+1}\)+\(\sqrt{4-x}\)+\(\sqrt{\left(x+1\right)\left(4-x\right)}\)=5
6) \(\sqrt{2-x}\)+\(\sqrt{x+2}\)+\(\sqrt{4-x^2}\)=2
a/ ĐKXĐ: \(x^2\ge\frac{1}{4}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-1}=a\\\sqrt{2x+1}=b\end{matrix}\right.\) \(\Rightarrow2x=\frac{b^2+a^2}{2}\)
Pt trở thành:
\(\sqrt{\frac{a^2+b^2}{2}+ab}+\sqrt{\frac{a^2+b^2}{2}-ab}=2\)
\(\Leftrightarrow\sqrt{a^2+b^2+2ab}+\sqrt{a^2+b^2-2ab}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}+\sqrt{\left(a-b\right)^2}=2\sqrt{2}\)
\(\Leftrightarrow\left|a+b\right|+\left|a-b\right|=2\sqrt{2}\)
\(\Leftrightarrow\left|\sqrt{2x+1}+\sqrt{2x-1}\right|+\left|\sqrt{2x+1}-\sqrt{2x-1}\right|=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{2x-1}+\sqrt{2x+1}-\sqrt{2x-1}=2\sqrt{2}\)
\(\Leftrightarrow2\sqrt{2x+1}=2\sqrt{2}\)
\(\Leftrightarrow2x+1=2\Rightarrow x=\frac{1}{2}\)
Câu b trong căn là \(\sqrt{x^3+3x}\) hay \(\sqrt{x^2+3x}\) bạn?
c/ ĐKXĐ: ...
\(\Leftrightarrow2\left(2x^2+5x+3\right)-5\sqrt{2x^2+5x+3}+3=0\)
Đặt \(\sqrt{2x^2+5x+3}=a\ge0\)
Pt trở thành:
\(2t^2-5t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2+5x+3}=1\\\sqrt{2x^2+5x+3}=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+5x+2=0\\2x^2+5x+\frac{3}{4}=0\end{matrix}\right.\) (bấm máy)
d/ ĐKXĐ ...
Nghi ngờ câu này bạn ghi sai đề, trong căn là \(\sqrt{\frac{x+1}{x}}\) thì đúng hơn
Đặt \(\sqrt{\frac{x+1}{2}}=a\ge0\Rightarrow x=2a^2-1\)
Pt trở thành:
\(\frac{2a^2-1}{2a^2}-2a=3\)
\(\Leftrightarrow4a^3+4a^2+1=0\)
Nghiệm pt bậc 3 này cực kì xấu và cơ bản là chương trình phổ thông VN ko dạy cách giải nên đến đây thì khẳng định được bạn ghi ko đúng đề