Giải phương trình bằng cách đặt ẩn phụ:
a) \(2\left(x^2-2x\right)^2+3\left(x^2-2x\right)+1=0;\)
b) \(\left(x+\dfrac{1}{x}\right)^2-4\left(x+\dfrac{1}{x}\right)+3=0.\)
Giải các phương trình :
a) \(x^3+4x^2+x-6=0\)
b) \(x^3-2x^2-5x+6=0\)
c) \(2x^4+2\sqrt{2}x^3+\left(1-3\sqrt{2}\right)x^2-3x-4=0\)
d) \(\left(2x^2+7x-8\right)\left(2x^2+7x-3\right)-6=0\)
Câu 1:Chứng minh với mọi \(x\ge0;x\ne4\)thì biểu thức Q=\(\frac{\sqrt{x}+2}{\sqrt{x+4}}\)không thể nhận giá trị nguyên
Câu 2:Giải các phương trình sau:
a)\(4x^2+11x+18=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
b)\(3x^2-11x-22=7\sqrt{\left(x+2\right)\left(x+5\right)\left(x-7\right)}\)
Câu 3:Giải các hệ phương trình:
a)\(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)+y\left(x^2-5\right)=xy^2-5x\\4x\sqrt{y+3}+2\sqrt{2x-1}=4y^2+3x+3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}.\left(2x+3\right)-2y=y^3\\\sqrt{2x+13}+5=3y+\sqrt{2x+6}\end{matrix}\right.\)
Câu 4:Giả sử (x;y) là các số thực thỏa mãn:
\(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+xy+y^2\)
Giải hệ phương trình bằng phương pháp đặt ẩn phụ
\(\left\{{}\begin{matrix}\frac{5}{x+y-3}-\frac{2}{x-y+1}=8\\\frac{3}{x+y-2}+\frac{1}{x-y+1}=1,5\end{matrix}\right.\)
Giải các phương trình :
a) \(3x^2+4\left(x-1\right)=\left(x-1\right)^2+3\)
b) \(x^2+x+\sqrt{3}=\sqrt{3}x+6\)
c) \(\dfrac{x+2}{1-x}=\dfrac{4x^2-11x-2}{\left(x+2\right)\left(x-1\right)}\)
d) \(\dfrac{x^2+14x}{x^3+8}=\dfrac{x}{x+2}\)
a) Gỉai phương trình :
\(3x^2-2x\sqrt{3}-3=0\)
b) Gỉai hệ phương trình sau :
\(\left\{{}\begin{matrix}x\left(x-1\right)+y=\left(x+1\right)\left(x-3\right)\\2x-3y=-1\end{matrix}\right.\)
Giải các phương trình:
a) \(5x^2-3x+1=2x+11;\) b) \(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6};\)
c) \(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x};\) d) \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1};\)
e) \(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right);\) f) \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right).\)
Bài 1 : Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x+27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a;b;c>0 thỏa mãn a+b+c=1
Chứng minh \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le21\)
Bài 3:Tìm các cặp số nguyên (x;y) thỏa mãn \(x^2+2y^2+2xy-5x-5y=-6\)
để (x+y) nguyên
Bài 4:Cho x,y,z là các số thực thỏa mãn điều kiện:\(x+y+z+xy+yz+zx=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 5: Với ba số thực a;b;c thỏa mãn điều kiện a(a-b+c)<0,chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
a) Gỉai phương trình :
\(3x^{2^{ }}-2x\sqrt{3}-3=0\)
b) Gỉai hệ phương trình :
\(\left\{{}\begin{matrix}x\left(x-1\right)+y=\left(x+1\right)\left(x-3\right)\\2x-3y=-1\end{matrix}\right.\)