chứng tỏ rằng 2019^2018-1 chia hết cho 2018
Chứng tỏ rằng : Tích (2017n+2019)*(2017n+2018) chia hết cho 2
Ta thấy (2017n + 2019) và (2017n + 2018) là 2 số tự nhiên liên tiếp
Th1: (2017n + 2019) là số chẵn; (2017n + 2018) là số lẻ
=> (2017n + 2019) \(⋮\)2 ; (2017n + 2018) \(⋮̸\)2
=> (2017n + 2019) (2017n + 2018) \(⋮\)2 (Vì (2017n + 2019) \(⋮\)2)
Th2: (2017n + 2019) là số lẻ; (2017n + 2018) là số chẵn
=> (2017n + 2018) \(⋮\)2 ; (2017n + 2019) \(⋮̸\)2
=> (2017n + 2019) (2017n + 2018) \(⋮\)2 (Vì (2017n + 2018) \(⋮\)2)
Vậy ....
B = 1+ 2018 + 20182 +20183 +... Chứng tỏ B chia hết cho 2019
B= 1+2018+20182+20183+....
Chứng tỏ B chia hết cho 2019.
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Chứng minh rằng 2018 mũ 2009 +1 chia hết cho 2019
\(2018\equiv-1\left(mod2019\right)\)
\(\Rightarrow2018^{2019}\equiv-1^{2019}=-1\) (mod 2019)
\(\Rightarrow2018^{2019}\equiv-1\) (mod 2019)
\(\Rightarrow2018^{2018}+1⋮2019\)
Các bạn trả lời hộ tớ với, tớ đang cần gấp:
Cho A=1.2.3...2018.(1+1/2+1/3+...+1/2017+1/2018)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2019
Chứng minh rằng: 2018^2019-1 chia hết cho 2017
Ảnh đại diện của bn đẹp z
C = 75 . ( $4^{2019}$ + $4^{2018}$ + $4^{2017}$ + ... + $4^{2}$ + 4 +1 ) + 25
Chứng tỏ C chia hết cho 100
Đặt \(D=1+4+...+4^{2019}\)
\(\Leftrightarrow4D=4+4^2+...+4^{2020}\)
\(\Leftrightarrow D=\dfrac{4^{2020}-1}{3}\)
\(C=75\cdot D+25\)
\(=25\left(4^{2020}-1\right)+25=25\cdot4\cdot4^{2019}⋮100\)
cho S = 1 + 2 + 2^2 + 2^3+2^4+2^5+...+2^2018+2^2019 . Chứng tỏ rằng S chia hết cho 3
giúp mik với ><
Ta có: S= 1+2+22+23+..............+22018+22019
S= (1+2+22+23)+............+(22016+22017+22018+22019)
S=1(1+2+22+23)+..........+22016(1+2+22+23)
S=1.(1+2+4+8)+.................+22016(1+2+4+8)
S=1.15+.....................+22016.15
S=15.(1+.....+22016)
S=3.5.(1+......+22016) \(⋮\) 3
Vậy S chia hết cho 3 ( đpcm).