Cho a/b=c/d
Chứng minh (a+b/c+d)^3=a^3-b^3/c^3-d^3
Ai làm nhanh mk sẽ tick, cảm ơn ạ
Cho a/b=c/d. Chứng minh (a+b/c+d)^3=a^3-b^3/c^3-d^3
Ai làm nhanh mk sẽ tick ạ. Mk đang cần gấp ạ
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
cho bốn số a b c d(khác 0) thõa mãn:
abcd=1 và a+b+c+d=1/a+1/b+1/c+1/d
chứng minh tồn tại tích hai trong bốn số đó bằng 1
(giải hộ em với ạ. am xin cảm ơn)
cho a/b=c/d khác 1 và -1 và c khác 0. Chứng minh rằng:
a) (a-b/c-d)^2=ab/cd
b) (a+b/c+d)^3=a^3-b^3/c^3-d^3
Làm ơn giúp mk với mai mình phải nộp bài rồi
CẢM ƠN MN TRƯỚC NHA=)))
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
cho a,b,c,d là các số nguyên thỏa mãn 5(a^3 + b^3 )=13(c^3 + d^3). Chứng minh a+b+c+d chia hết cho 6
Giups mik vs mik cảm ơn ạ
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
Bài 1 :CMR : a, (a-b)+(c-d)-(a-c)=-(b+d)
b (a-b)-(c-d)+(b+c)=a+d
Bài 2 : CMR 2n + 1 và 2n + 3 ( n thuộc N ) là số nguyên tố cùng nhau
giúp mk nha mk cần rất gấp ai nhanh nhất và đúng mk sẽ cho 3 tick nhanh nha
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
MN GIUPS MK VS Ạ, MK XIN CẢM ƠN. MK ĐG CẦN RẤT GẤP Ạ.
B1) Cho các số thực dương a,b,c . CMR
a) a^2+b^2+c^2+abc+5>=3(a+b+c)
b) a^2+b^2+c^2 + 2abc +4>=2(a+b+c)+ab+bc+ca.
B2) Cho các số thực a; b; c: Chứng minh rằng
(a^2+1)(b^2+1)(c^2+1)>=5/16 .(a+b+c+d+1)^2.
MN GIÚP MK VS Ạ. MONG ADD DUYỆT Ạ . CẢM ƠN MN.
cho 3 điểm A,B,C,D thẳng hàng và 3 điểm C,D,B thẳng hàng . 2 đương thẳng a,c và b,d có trùng nhau không ? vì sao ?
Các bạn giải giúp mình bài này với ạ , mình dâng cần gấp ! Cảm ơn các bạn nhiều !
bạn nào trả lời đúng và nhanh thì mình tick cho !
Tìm ba số nguyên a; b; c biết: a + b - c = -3; a - b + c = 11; a - b - c = -1.
Ai biết giúp mk vs mk đag cần rất gấp nhớ kèm theo cách giả dầy đủ nha
Cảm ơn nhiều mk sẽ tick a nhanh nhất
Bài 1: tìm x,y,z
a) x-1/0-2 = 1,2/1,5
b) x = y/2 = z/3 và 4x - 3y + 2z =16
c) 2x = 3y; 5y = 72 và 3x -7y + 5z = 30
d) x : y : z = 3 : 5 : 2 và 5x - 7y + 5z = 124
e) x/3 = y/5 và x . y = 240
Bài 2: Cho a/b = c/d. Chứng minh rằng:
a) a/ a - b = c/c - d
b) a/ a + b = c/ c + d
c) 5a + 3b/ 5a - 3b = 5c + 3d/ 5c - 3d
Bạn nào làm được giúp mình với ạ! Tối mình đi học rồi! Chiều về mình sẽ tích cho ạ! Mình cảm ơn!
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
Bài 1:
e) \(\frac{x}{3}=\frac{y}{5}=k\left(k\inℝ\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
Ta có: \(x\cdot y=240\Leftrightarrow15k^2=240\)
\(\Leftrightarrow k^2=16\Rightarrow k=\pm4\)
=> \(\hept{\begin{cases}x=\pm12\\y=\pm20\end{cases}}\)