HD

cho a,b,c,d là các số nguyên thỏa mãn 5(a^3 + b^3 )=13(c^3 + d^3). Chứng minh a+b+c+d chia hết cho 6

Giups mik vs mik cảm ơn ạ

NT
1 tháng 4 2023 lúc 23:03

=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)

=>5(a^3+b^3+c^3+d^3) chia hết cho 6

=>a^3+b^3+c^3+d^3 chia hêt cho 6

a^3-a=a(a+1)(a-1) chia hết cho 3!=6

b^3-b=b(b+1)(b-1) chia hết cho 3!=6

c^3-c=c(c+1)(c-1) chia hết cho 3!=6

d^3-d=d(d+1)(d-1) chia hết cho 3!=6

=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6

=>a+b+c+d chia hết cho 6

Bình luận (0)

Các câu hỏi tương tự
VQ
Xem chi tiết
VQ
Xem chi tiết
BN
Xem chi tiết
ZZ
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
TN
Xem chi tiết