Những câu hỏi liên quan
H24
Xem chi tiết
MH
Xem chi tiết
VT
8 tháng 5 2022 lúc 21:23

a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.

\(\rightarrow x \ne y\)\(\ne 0\)

Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)

Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)

\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)

Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)

Vậy \((x,y) = {(1,1)}.\)

b, Chứng minh bằng phương pháp phản chứng:

Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.

Không mất tổng quát, giả sử \(x < y\)

\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)

\(\rightarrow (y+1)^{17} ≤ 19^{17} \)

\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)

Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)

Thử lại không đúng, suy ra giả sử sai.

\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.

Bình luận (2)
TL
8 tháng 5 2022 lúc 21:04

undefined

undefined

From : https://solvee.vn/r/baitap/812003032

Bình luận (2)
AQ
Xem chi tiết
KS
4 tháng 4 2022 lúc 18:40

\(1,\dfrac{x-1}{3}=x+1\\ \Leftrightarrow x-1=3x+3\\ \Leftrightarrow3x-x=3+1\\ \Leftrightarrow x=2\)

PT có tập nghiệm S = {2}

\(2,\sqrt{16x^2+8x+1}-2=x\\ \Leftrightarrow\sqrt{\left(4x+1\right)^2}-2=x\\\Leftrightarrow 4x+1-2=x\\ \Leftrightarrow4x-x=2-1\\ \Leftrightarrow x=\dfrac{1}{3}\)

PT có tập nghiệm S = {1/3}

\(3,\left\{{}\begin{matrix}2x+y=17\\x-2y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+y=17\\2x-4y=2\end{matrix}\right.\\ \Leftrightarrow\left(2x+y\right)-\left(2x-4y\right)=17-2\\ \Leftrightarrow5y=15\\ \Leftrightarrow y=3\\ \Leftrightarrow2x+3=17\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\)

PTHH có tập nghiệm (x; y) là (7; 3)

Bình luận (0)
TK
Xem chi tiết
DH
Xem chi tiết
NL
11 tháng 11 2021 lúc 20:36

\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)

\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)

\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)

\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)

Phương trình ước số cơ bản

 

Bình luận (0)
H24
Xem chi tiết
TM
Xem chi tiết
DH
17 tháng 5 2024 lúc 23:10

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 10 2023 lúc 11:52

Guip mình với ạ 

Bình luận (0)
NL
Xem chi tiết
H24
17 tháng 2 2023 lúc 21:58

Bình luận (1)