MH

Giải phương trình nghiệm nguyên:

a) \(x!+y!=\left(x+y\right)!\)

b) \(x^{17}+y^{17}=19^{17}\)

VT
8 tháng 5 2022 lúc 21:23

a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.

\(\rightarrow x \ne y\)\(\ne 0\)

Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)

Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)

\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)

Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)

Vậy \((x,y) = {(1,1)}.\)

b, Chứng minh bằng phương pháp phản chứng:

Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.

Không mất tổng quát, giả sử \(x < y\)

\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)

\(\rightarrow (y+1)^{17} ≤ 19^{17} \)

\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)

Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)

Thử lại không đúng, suy ra giả sử sai.

\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.

Bình luận (2)
TL
8 tháng 5 2022 lúc 21:04

undefined

undefined

From : https://solvee.vn/r/baitap/812003032

Bình luận (2)

Các câu hỏi tương tự
ND
Xem chi tiết
PN
Xem chi tiết
TT
Xem chi tiết
KN
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
UN
Xem chi tiết
LP
Xem chi tiết