Hãy:Chứng minh rằng:AI//KB:
Cho tam giác ABC có AB=AC,gọi M và N là Trung điểm của AB và AC
a, Chứng minh BN=CM
b, góc B=C
c,gọi I là giao điểm cuả BN và CM
Chứng minh rằng:AI là đường trung trực của BC
Giup mk với mk đang cần gấp chiều nay nộp,mà bà cô mk khó lắm
Cho tam giác ABC có AB=AC,gọi M và N là Trung điểm của AB và AC
a, Chứng minh BN=CM
b, góc B=C
c,gọi I là giao điểm cuả BN và CM
Chứng minh rằng:AI là đường trung trực của BC
Giup mk với mk đang cần gấp chiều nay nộp,mà bà cô mk khó lắm
b/ Bn tu ve hinh, duong ke phu AH la p/g goc A
Xet \(\Delta ABH\)va \(\Delta ACH\),co:
\(AB=AC\)(GT)
\(\widehat{BAH}=\widehat{CAH}\)(AH la tia p/g goc A)
\(AHchung\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\widehat{B}=\widehat{C}\left(dpcm\right)\)
Cho tam giác ABC có AB=AC,gọi M và N là Trung điểm của AB và AC
a, Chứng minh BN=CM
b, góc B=C
c,gọi I là giao điểm cuả BN và CM
Chứng minh rằng:AI là đường trung trực của BC
Giup mk với mk đang cần gấp chiều nay nộp,mà bà cô mk khó lắm
bộ học sinh tb hay sao mà ko làm đc bài này
a)+vì AB=AC
M là tđ của AB
N là tđ của AC
=> MA=MB=NA=NC
+ Xét △BAN và ΔCAM
AB=AC (gt)
∠A chung
AN=ANM(cmt)
=> Δ BAN= ΔCAM (c.g.c)
=>BN=CM (2 cạnh tương ứng) (đpcm)
b) +vì AB=AC
=>ΔABC cân tại A
=>∠B=∠C (đpcm)
c) Gọi AI cắt BC tại H
+Xét Δ ABC có
MA=MB =>CM là trung tuyến
NA=NC => BN là trung tuyến
CM cắt BN tại I => I là trọng tâm
AH đi qua I => AH là trung tuyến
=>HB =HC (1)
+Vì △ABC cân tại A
AH là trung truyến đồng thời là đường cao
=>AH ⊥ BC (2)
từ (1) và (2)
=>AH là trung trực của BC hay AI là trung trực của BC (đpcm)
Cho tam giác ABC có AB=AC,gọi M và N là Trung điểm của AB và AC
a, Chứng minh BN=CM
b, góc B=C
c,gọi I là giao điểm cuả BN và CM
Chứng minh rằng:AI là đường trung trực của BC
Giup mk với mk đang cần gấp chiều nay nộp,mà bà cô mk khó lắm
a: Xét ΔABN và ΔACM có
AB=AC
góc BAN chung
AN=AM
Do đó; ΔABN=ΔACM
b: ta có: ΔABC cân tại A
nên \(\widehat{ABC}=\widehat{ACB}\)
c: Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Ta có: AB=AC
IB=IC
Do đó: AI là đường trung trực của BC
Cho tam giác ABC có AB=AC,gọi M và N là Trung điểm của AB và AC
a, Chứng minh BN=CM
b, góc B=C
c,gọi I là giao điểm cuả BN và CM
Chứng minh rằng:AI là đường trung trực của BC
Giup mk với mk đang cần gấp chiều nay nộp,mà bà cô mk khó lắm
Mk chụp thiếu 1 dòng rồi bn ạ... Sau cái chỗ tam giác AMI = tam giác ANI bn thêm vào là góc AIN = góc AIM nhé
Cho tam giác ABC vuông tại A,có AB = 3cm,AC = 4cm,đường cao AD
a)Tính độ dài CD
b)Gọi I,K lần lượt là hình chiếu của D trên AB và AC.Chứng minh rằng:AI*AB = AD^2
c)CM rằng: AI*AB = AK*AC
d)CM rằng: tam giác ABC đồng dạng tam giác AKI
a) Ta có:
Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2. Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:
Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
Do đó, ta có:
AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)
DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)
BC = AB + AC = 3 + 4 = 7
Từ đó suy ra: AI/AB = (AD - 2)/7
Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.
c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:
Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
Do đó, ta có:
AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)
AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)
DF + CF = CD = 2
AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)
Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).
Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).
d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:
Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
Do đó, ta có:
ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)
DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)
AB = 3, AC = 4, BC = 7
Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.
Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))
Từ đó suy ra: ID = (2AI - 3AK)/4.
Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH
18:22Cho tam giác ABC gọi I,K là trung điểm của AB,AC. Trên tia đối của tia IC và KB lấy bn tương ứng hai điểm M,N sao cho MI=IC và NK=KB chứng minh
a, tam giác AIM= tam giác BIC
B,góc ABI =góc BCM
c,Ba điểm M,A,N thẳng hàng
Cho tam giác ABC vuông tại B; K là trung điểm của AC . Trên tia đối của KB lấy D sao cho KD = KB.
a. Chứng minh: tam giác ABK = CKD
b. Gọi H là trung điểm của BC; AH cắt BD tại M; DH cắt AC tại N. C/m rằng góc MHB=NHC
c. C/m: Tam giác HMN cân
a) xét tam giác ABK và CKD có
AK=KC (vì k là trung điểm của AC)
BK=KD (gt)
góc BKA=DKC (đối đỉnh)
=>tam giác ABK=CKD
b) ta có \(\widehat{ABK}=\widehat{CKD}\)(2 góc tương ứng)
mà 2 góc ở vị trí SLT
nên AB//CD
mà AB=CD (2 cạnh tương ứng)
nên tứ giác ABCD là hình bình hành
+xét \(\Delta ABC\)vuông tại B có đường trung tuyến ứng với cạnh huyền
nên BK=AK=KC
mà BK=KD
=>AK=BK=CK=DK
ta có AK+CK=BK+DK hay BD=AC
xét hình bình hành ABCD có hai đường chéo AC=BD nên ABCD là hình chữ nhật
+xét \(\Delta ABH\)và\(\Delta DCH\)có
BH=CH(gt)
AB=CD(cmt)
\(\widehat{ABH}=\widehat{DCH}=90^o\)(vì ABCD là HCN)
=>\(\Delta ABH=\Delta DCH\)=>\(\widehat{AHB}=\widehat{DHC}\)(2 góc tương ứng)
c)vì BK=CK => tam giác BKC cân
=>góc KBH=KCH
xét \(\Delta BMH\)và\(\Delta CNH\)có
góc KBH=KCH(cmt)
góc AHB=DHC(cmt)
BH=CH (gt)
=>\(\Delta BMH=\Delta CNH\)
=>MH=NH
xét tam giác MHN có
MH=NH=> MHN cân tại H
cho tam giác ABC vuông tại A ,K là trung điểm của BC,qua K kể đường thẳng vuông góc AK,đường thẳng này cắt AB,AC lần lượt ở D và E.gọi I là trung điểm của DE
a) chứng minh rằng:AI vuông góc với DE
b)có thể nói DE nhỏ hơn BC không ? vì sao?
Cho tam giác ABC vuông tại B; K là trung điểm của AC . Trên tia đối của KB lấy D sao cho KD = KB.
a. Chứng minh: tam giác ABK = CKD
b. Gọi H là trung điểm của BC; AH cắt BD tại M; DH cắt AC tại N. C/m rằng góc MHB=NHC
c. C/m: Tam giác HMN cân
a: Xét ΔABK và ΔCDK có
KA=KC
góc AKB=góc CKD
KB=KD
DO đo: ΔABK=ΔCDK
b: Xét ΔABH vuông tại B và ΔDCH vuông tại C có
AB=CD
BH=CH
Do đó:ΔABH=ΔDCH
Suy ra: \(\widehat{MHB}=\widehat{NHC}\)
c: Xét ΔMHB và ΔNHC có
góc MHB=góc NHC
HB=HC
góc MBH=góc NCH
Do đó: ΔMHB=ΔNHC
Suy ra: HM=HN
hay ΔHMN cân tại H