Những câu hỏi liên quan
LH
Xem chi tiết
LH
8 tháng 6 2015 lúc 8:25

3200 VÀ 2300

3200 = ( 32)100 = 9100

2300 = ( 23)100 = 8100

MÀ 9100> 8100

NÊN 3200> 2300

thê này à mn

 

Bình luận (0)
YB
Xem chi tiết
HG
12 tháng 8 2015 lúc 14:44

200300 = 2003.100 = (2003)100 = 8000000100

300200 = 3002.100 = (3002)100 = 90000100

Vì 8000000100 > 90000100

=> 200300 > 300200

Bình luận (0)
ML
12 tháng 8 2015 lúc 14:48

200300=(2003)100=8000000100

300200=(3002)100=90000100

Vì 8000000>90000=>8000000100>90000100

=>200300>300200

Bình luận (0)
NN
Xem chi tiết
NT
14 tháng 1 2023 lúc 0:54

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 11 2021 lúc 15:33

2300<3200

Bình luận (0)
NM
16 tháng 11 2021 lúc 15:33

\(2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}\)

Bình luận (0)
DD
16 tháng 11 2021 lúc 15:34

( 2)100 và (32)100

8100 < 9100 

=>2300 < 3200

Bình luận (0)
BN
Xem chi tiết
GD

\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

Bình luận (0)
LT
Xem chi tiết
NT
28 tháng 7 2023 lúc 19:30

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

Bình luận (0)
KR
28 tháng 7 2023 lúc 19:32

`@` `\text {Ans}`

`\downarrow`

Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Vì `8 < 9 \Rightarrow `\(8^{100}< 9^{100}\)

`\Rightarrow `\(2^{300}< 3^{200}\)

___

`@` So sánh `2` lũy thừa cùng số mũ:

`a^m > b^m` khi `a > b.`

Bình luận (0)
NY
Xem chi tiết
NT
18 tháng 1 2024 lúc 20:14

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

mà \(8^{100}< 9^{100}\left(8< 9\right)\)

nên \(2^{300}< 3^{200}\)

Bình luận (0)
DL
18 tháng 1 2024 lúc 20:32

2\(^{300}\)<3\(^{300}\)

Bình luận (1)
H24
Xem chi tiết
PA
9 tháng 7 2016 lúc 21:53

a.

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)

Vậy \(3^{200}>2^{300}\)

b.

\(5^{200}=\left(5^2\right)^{100}=25^{100}< 32^{100}=\left(2^5\right)^{100}=2^{500}\)

Vậy \(5^{200}< 2^{500}\)

Bình luận (0)
VT
9 tháng 7 2016 lúc 21:53

Ta có : \(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

\(\Rightarrow9^{100}>8^{100}\)

\(\Rightarrow3^{200}>2^{300}\)

Bình luận (0)
VT
9 tháng 7 2016 lúc 21:56

Ta có : \(5^{200}=5^{2.100}=\left(5^2\right)^{100}=25^{100}\)

\(2^{500}=2^{5.100}=\left(2^5\right)^{100}=32^{100}\)

\(\Rightarrow25^{100}< 32^{100}\)

\(\Rightarrow5^{200}< 2^{500}\)

Bình luận (0)
LH
Xem chi tiết
H24
24 tháng 6 2021 lúc 16:13

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

Bình luận (0)