So sánh
a)\(2\sqrt[3]{3}\) và \(3\sqrt[3]{2}\)
b)24 và \(2\sqrt[3]{1730}\)
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
So sánh hai số sau:
\(a,2\sqrt{3}\) và \(3\sqrt{2}\)
\(b,\sqrt{24}+\sqrt{45}\) và 12
căn 24< căn 25 =5 :
căn 45<căn 49 =7
=> căn 24+ căn 45 < căn 25+ căn 49 =5+7=12
a) \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
Vì 12<18 => \(\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) \(12=5+7=\sqrt{25}+\sqrt{49}>\sqrt{24}+\sqrt{45}\)
a) \(2\sqrt{3}\text{=}\sqrt{2^2.3}\text{=}\sqrt{12}\) (1)
\(3\sqrt{2}\text{=}\sqrt{3^2.2}\text{=}\sqrt{18}\) (2)
Mà 12 < 18 (3)
Từ (1) (2) (3) => \(\sqrt{12}\)< \(\sqrt{18}\)
b) Ta có 12 = 5 + 7 = \(\sqrt{5^2}\)+ \(\sqrt{7^2}\)= \(\sqrt{25}\)+ \(\sqrt{49}\)> \(\sqrt{24}+\sqrt{45}\)
#Iza_dang_cap#
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
Câu 1: Kết quả so sánh 3 và căn 8là:
A. 3 > \(\sqrt{8}\) B. 3 < \(\sqrt{8}\) C. 3 ≤ \(\sqrt{8}\) D. \(\sqrt{3}\)< \(\sqrt{8}\)
Câu 2. \(\sqrt{3x-2}\) xác định khi và chỉ khi:
A. x ≥ 0 B. x ≥ \(\dfrac{2}{3}\) C. x ≥ \(\dfrac{3}{2}\) D. x < \(\dfrac{2}{3}\)
Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\) bằng:
A. \(3-2\sqrt{2}\) B. \(1-\sqrt{2}\) C. \(\sqrt{2}-1\) D. \(2\sqrt{2}+3\)
Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:
A. \(-b\sqrt{a}\) B. \(b\sqrt{a}\) C .\(a\sqrt{b}\) D. \(-a\sqrt{b}\)
Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\) (với a b cùng dấu) ta được:
A. \(\dfrac{\sqrt{2ab}}{a}\) B. \(\dfrac{\sqrt{2ab}}{b}\) C. \(\dfrac{\sqrt{2ab}}{-b}\) D. \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)
Câu 6: Hàm số y = \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:
A. m ≠ 5 B. m > 5 C. m < 5 D. m = 5
Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:
A. (d1) B. (d2) C. (d3) D. (d1) và (d3)
Câu 8: Hai đường thẳng y = -3x +4 và y = (m+1)x +m song song với nhau khi m bằng:
A. 4 B. -2 C. -3 D. -4
Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?
A. y = \(7+\left(\sqrt{2}-3\right)x\) B. y = \(4-\left(1-\sqrt{3}\right)x\) C. y = \(-5-\left(1-\sqrt{2}\right)x\) D. y = 4+ x
Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?
A. y=x +2 và y= -x+2 B. y= -3-2x và y= -2x-3
C. y= 2x -1 và y= 2+3x D. y=1 – 2x và y= -2x+3
Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?
A.y+ x = -1 B. 2x + y = 1 C. 2y = 2 – 2x D. 3y = -3x +1
Câu 12: Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?
A.(1; -1) B. ( -1; 1) C. (3;2) D. (2; 3)
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
cho \(a=\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\)và \(b=2\sqrt[3]{3}\)so sánh a và b
cho \(a=\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\)và \(b=2\sqrt[3]{3}\)so sánh a và b
Câu hỏi của Đừng thương hại tôi Điều tôi muốn nói - Toán lớp 9 | Học trực tuyến
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
So sánh ( Không sử dụng máy tính)
a) \(\sqrt{2}+\sqrt{3}\) và 3
b) 5 - và\(3\sqrt{2}-2\)
c) 3+ và \(2\sqrt{2}+6\)