CMR:\(\sqrt{5};\sqrt{6}\) là các số vô tỉ
CMR :\(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}< 8\)
Ta có cái đầu <5
Cái sau <3 nên VT <8
CMR:\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=2\)
Đặt \(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}=x>0\)
\(\Rightarrow x^3=14-3\left(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\right)\sqrt[3]{\left(5\sqrt[]{2}+7\right)\left(5\sqrt[]{2}-7\right)}\)
\(\Rightarrow x^3=14-3x.\sqrt[3]{\left(5\sqrt[]{2}\right)^2-7^2}\)
\(\Rightarrow x^3=14-3x\)
\(\Rightarrow x^3+3x-14=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
\(\Rightarrow x=2\)
CMR: \(\dfrac{4}{\sqrt{5}-1}+\dfrac{3}{\sqrt{5}-2}+\dfrac{16}{\sqrt{5}-3}=-5\)
\(\dfrac{4}{\sqrt{5}-1}+\dfrac{3}{\sqrt{5}-2}-\dfrac{16}{3-\sqrt{5}}\)
\(=\sqrt{5}+1+3\sqrt{5}+6-12-4\sqrt{5}\)
=-5
CMR: \(\dfrac{\sqrt{4+\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=1\)
Đề bài đúng: \(\dfrac{\sqrt{4-\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=1\)
Hoặc: \(\dfrac{\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}=1\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{5-3}{2}=1\)
\(\dfrac{\sqrt{4-\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=\dfrac{\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}+\sqrt{3}\right)}{2}=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}=\dfrac{5-3}{2}=1\)
CMR : \(\frac{\sqrt[4]{5}-1}{\sqrt{5}+1}=\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)
CMR \(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
Đặt \(a=\sqrt[4]{5}\Leftrightarrow5=a^4\)
Ta cần chứng minh: \(\left(\frac{a+1}{a-1}\right)^4=\frac{3+2a}{3-2a}\)
Khai triển: \(VT=\left(\frac{a+1}{a-1}\right)^4=\frac{\left(a+1\right)^4}{\left(a-1\right)^4}\)
\(=\frac{2\left(3+2a\right).\left(1+a^2\right)}{2\left(3-2a\right).\left(1+a^2\right)}\)
\(\frac{3+2a}{3-2a}=VP\)(đpcm)
CMR:
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}=1+\sqrt{2}\)
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=1+\sqrt{2}\)
⇒ ĐPCM
CMR các số sau đều là số nguyên:
\(y=\sqrt{\sqrt{5}-1}\left(\sqrt{8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}}-\sqrt{7-\sqrt{20}}\right)\)
CMR:
\(\dfrac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\dfrac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
CMR:
\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=2\)