Chứng minh rằng :
1/22+1/42+...+1/1002 <1/2
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
B=1/22+1/42+1/62+... 1/1002
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)
\(B=0+0+...+0\)
\(B=0\)
Chứng minh rằng: M = 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1
M = 1002– 992 + 982 – 972 + … + 22 – 12;
N = (202+ 182 + 162 + … + 42 + 22) – (192 + 172 + 152 + … + 32 + 12);
P = (-1)n.(-1)2n+1.(-1)n+1.
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
Câu 1: Chứng minh rằng 2 + 1/2 +1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 +1/32 +...+ 1/902
Chứng minh 42/91 < B < 1
Câu 1: Chứng minh rằng 2 + 1/2 + 1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 + 1/32 +... + 1/902
Chứng minh: 42/91 < B < 1
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
chứng minh rằng
\(\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}< \dfrac{1}{2}\)
ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn
Chứng Minh Rằng :A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{1002^2}\)<\(\dfrac{1}{2}\)
A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + .....+ \(\dfrac{1}{1002^2}\)
A = \(\dfrac{1}{2^2.1^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+\(\dfrac{1}{2^2.501^2}\)
A = \(\dfrac{1}{2^2}\) \(\times\)( \(1\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{501^2}\))
ta có : \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)
................
\(\dfrac{1}{501^2}\) < \(\dfrac{1}{500.501}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{500.501}\)
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}-\dfrac{1}{3}\)+.....+ \(\dfrac{1}{500}-\dfrac{1}{501}\)
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+......+ \(\dfrac{1}{501^2}\) < 1 - \(\dfrac{1}{501}\) < 1
=>A = \(\dfrac{1}{4}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{3^2}\)+.....+\(\dfrac{1}{501^2}\)) < \(\dfrac{1}{4}\) \(\times\)(1 + 1)
A < \(\dfrac{1}{4}\) \(\times\) 2
A < \(\dfrac{1}{2}\)