Những câu hỏi liên quan
TT
Xem chi tiết
NA
Xem chi tiết
DY
Xem chi tiết
AN
5 tháng 1 2017 lúc 7:07

Ta có 

a2+b2+c2 = ab+bc+ca

<=> 2(a2+b2+c2)= 2(ab+bc+ca)

<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c- 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

Thế vào pt thứ (2) ta được

a8 + b8 + c8 = 3

<=> 3a8 = 3

<=> a8 = 1

<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)

Từ (3) => P = 1 + 1 - 1 = 1

Từ (4) => P = - 1 + 1 + 1 = 1

Bình luận (0)
TA
Xem chi tiết
NT
5 tháng 9 2023 lúc 14:41

Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c

\(a^2+b^2+c^2>=ab+bc+ac\)

=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)

=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

a: ab+ac+bc>=3

mà a^2+b^2+c^2>=ab+ac+bc(CMT)

nên a^2+b^2+c^2>=3

Dấu = xảy ra khi a=b=c=1

Khi a=b=c=1 thì A=1+1+1+10=13

b: a^2+b^2+c^2<=8

Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)

=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)

Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)

Bình luận (0)
H24
Xem chi tiết
MK
Xem chi tiết
GM
23 tháng 2 2022 lúc 13:54

Ta có 

a2+b2+c2 = ab+bc+ca

<=> 2(a2+b2+c2)= 2(ab+bc+ca)

<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c- 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

Thế vào pt thứ (2) ta được

a8 + b8 + c8 = 3

<=> 3a8 = 3

<=> a8 = 1

<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)

Từ (3) => P = 1 + 1 - 1 = 1

Từ (4) => P = - 1 + 1 + 1 = 1

Bình luận (0)
 Khách vãng lai đã xóa

ta có   :\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà ta có:  \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)   \(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)  \(\forall a,b,c\)

dấu  \("="\) xảy ra \(\Leftrightarrow a=b=c\)

lại có:\(a^8+b^8+c^8=3\)  mà \(a=b=c\)

\(\Rightarrow a^8+a^8+a^8=3\)

\(\Leftrightarrow a^8=1\)

\(\Leftrightarrow a=1\)

vậy \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
MK
23 tháng 2 2022 lúc 14:01

bạn ghost mantits cóp ở đâu thế thấy sai sai

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
SH
Xem chi tiết