cho a,b,c,d≥0≥0 thỏa a≥c+d, b≥c+d
cm:ab≥ad+bc
Cho a,b,c,d>0 thỏa mãn a>c+d,b>c+d. CMR:ab>ad+bc
Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)
Cho 4 số a, b, c,d thỏa mãn:
a+b+c+d=0 và ab+ac+ad+bc+bd+cd=0
Chứng minh rằng: a=b=c=d.
Cho a, b, c, d >0 thỏa mãn a > c+d, b > c+d
Chứng minh: ab> ad+ bc
Lời giải:
Nếu $a\geq b$
Từ $b>c+d$
$\Rightarrow ba> ac+ad$. Mà $ac\geq bc$ do $a\geq b$
$\Rightarrow ba>bc+ad$ (1)
Nếu $a< b$
Từ $a>c+d$
$\Rightarrow ab>bc+bd$. Mà $bd> ad$ do $a< b$
$\Rightarrow ab>bc+ad$ (2)
Từ (1) và (2) ta có đpcm.
cho a,b,c,d≥0≥0 thỏa a≥c+d, b≥c+d
cm:ab≥ad+bc
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
cho hai số hữu tỉ a/b và c/d (b.0,d>0). chứng tỏ rằng:
a) nếu a/b<c/d thì ad<bc
b)Nếu ad<bc thì a/b<c/d
Ta có:
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Cho hai số hữa tỉ a/b và c/d (b>0,d>0) . Chứng tỏ rằng
a) Nếu a/b <c/d thì ad <bc
b) Nếu ad < bc thì a/b <c/d
bài này tôi giải 2 câu thành 1 câu
Ta có :a/b=a.d/b.d ; c/d=b.c/b.d
vì b>0 , d>0 nên b.d>0, do đó :
nếu a/b<c/d thì a.d/d.b < b.c/b.d => a/b<c/d<=>a.d<b.c
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1, cho hai số hữu tỉ a/b va c/d (b>0,d>0). chứng tỏ rằng
a) nếu a/b>c/d thi ad>bc
b) nếu ad>bc thì a/b và c/d
Cho hai số hữu tỉ a/b và c/d ( b>0,d>0) . Chứng tỏ rằng:
a) Nếu a/b < c/d thì ad<bc
b) Nếu ad<bc thì a/b<c/d