Những câu hỏi liên quan
DA
Xem chi tiết
HF
22 tháng 7 2020 lúc 20:35

Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PH
Xem chi tiết
AH
23 tháng 8 2019 lúc 9:47

Lời giải:

Nếu $a\geq b$

Từ $b>c+d$

$\Rightarrow ba> ac+ad$. Mà $ac\geq bc$ do $a\geq b$

$\Rightarrow ba>bc+ad$ (1)

Nếu $a< b$

Từ $a>c+d$

$\Rightarrow ab>bc+bd$. Mà $bd> ad$ do $a< b$

$\Rightarrow ab>bc+ad$ (2)

Từ (1) và (2) ta có đpcm.

Bình luận (0)
HN
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 4 2017 lúc 17:19

Bình luận (0)
HA
Xem chi tiết
NA
1 tháng 11 2019 lúc 21:50

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
TT
29 tháng 5 2015 lúc 8:04

 Ta có: 
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết: 
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì 
b. Hãy viết ba số hữu tỉ xen giữa và 

Bình luận (1)
VH
Xem chi tiết
LQ
23 tháng 8 2017 lúc 8:59

bài này tôi giải 2 câu thành 1 câu

Ta có :a/b=a.d/b.d ; c/d=b.c/b.d

vì b>0 , d>0 nên b.d>0, do đó :

nếu a/b<c/d thì a.d/d.b < b.c/b.d => a/b<c/d<=>a.d<b.c

Bình luận (0)
H24
23 tháng 8 2017 lúc 11:20

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
LA
Xem chi tiết
H24
Xem chi tiết
H24
17 tháng 8 2015 lúc 20:12

a,Nhân bd vào 2 vế

b,Chia bd cả 2 vế

Bình luận (0)